УДК 552.11:553.484.078(571.151)

НОВЫЕ ДАННЫЕ ПО МИНЕРАЛЬНОМУ СОСТАВУ КОБАЛЬТОВОГО ОРУДЕНЕНИЯ ГОРНОГО АЛТАЯ

А. И. Гусев*, Н. И. Гусев**

Кобальтовое оруденение Горного Алтая изучено на комплексных месторождениях: Cu-Bi-Co-W Каракульском и W-Co Карагемском. Впервые выделены и охарактеризованы высокотемпературные апатит-биотит-кварцевые метасоматиты с Ni-Co-As и P3Э минерализацией и более поздние апатит-биотит-актинолитовые руды с Co-Bi-Te потенциально золотоносной минерализацией. Установлены физико-химические характеристики Ni-Co оруденения. На основании геохимических данных по рудам, химических (микрозондовых) анализов минералов получены новые данные по обогащенности ранних стадий рудного процесса редкоземельной минерализацией.

Ключевые слова: Си-Ві-Со-W Каракульское месторождение, W-Со Карагемское месторождение, Ni-Со руды, метасоматиты, редкие земли.

NEW DATA ON MINERAL COMPOSITION OF THE GORNY ALTAI COBALT MINERALIZATION

A. I. Gusev, N. I. Gusev

The cobalt mineralization of the Gorny Altai is studied from complex deposits: Cu-Bi-Co-W Karakulskoye and W-Co Karagemskoye. High-temperature apatite-biotite-quartziferous metasomatites with Ni-Co-As and REE mineralization and later apatite-biotite-actinote ores with Co-Bi-Te potentially gold-containing mineralization are distinguished and defined for the first time. Physicochemical characteristics of the Ni-Co mineralization are determined. New data on enrichment of early stages of rare-earth mineralization ore proccess are obtained on the basis of geochemical data on ores, chemical (microprobe) analyses of minerals.

Keywords: Cu-Bi-Co-W Karakulskoye deposit, W-Co Karagemskoye deposit, Ni-Co ores, metasomatites, rare earths.

В последние годы изучено комплексное медно-висмут-кобальт-вольфрамовое Каракульское месторождение. Получены новые данные по вещественному составу и последовательности формирования руд [1–3]. Аналогичное исследование Карагемского вольфрам-кобальтового месторождения также выявило новые материалы по составу руд и околорудных метасоматитов.

Каракульское медно-висмут-кобальт-вольфрамовое месторождение локализуется в зоне контакта терригенных образований барбургазинской и богутинской свит, прорванных гранитоидами юстыдского комплекса (D₃-C₁) и дайками долеритов и долеритовых порфиритов караоюкского позднедевонского и терехтинского мезозойского комплексов. Дайки караоюкского комплекса широко распространены к югу от месторождения в междуречье Барбургазы и Караоюка и представлены долеритовыми порфиритами, андезибазальтами, реже андезидацитовыми порфиритами и риолитами. В пределах месторождения к этому комплексу относится дайка долеритового порфирита, вскрытая на поверхности канавой № 40 в центральной части и на горизонте штольни – южным штреком. Рассечками и скважинами дайка прослежена в западном направлении на 40 м без признаков выклинивания. Мощность дайки около 3 м, контакты с вмещающими породами четкие вертикальные. Ориентировка дайки широтная.

Карагемское скарновое вольфрам-кобальтовое месторождение расположено в нижнем течении р. Карагем, правого притока р. Аргут. Оно приурочено к аномальному участку Чарышско-Теректинского разлома. Последний здесь резко меняет ориентировку с северо-западной на широтную, что обусловило его ветвление по типу конского хвоста. В южном блоке аномального участка произошло внедрение нескольких тел гранитоидов. Наиболее крупный среди них Иедыгемский массив (D₂), в связи с которым в рудном поле проявлено кобальтовое и вольфрамовое оруденение. Минерализация кобальта наблюдается преимущественно в мраморизованных и скарнированных известняках, реже - в кварцитовидных породах и минерализованных зонах в ороговикованных черных сланцах. Необходимо также отметить четкую приуроченность Карагемского рудного поля к экзоконтактовой зоне Иедыгемского гранитного массива катандинского габбро-диорит-гранодиоритового комплекса (D₂).

Важнейшая особенность обоих месторождений – наличие ранних агрегатов кварц-апатитхлоантит-герсдорфит-аннабергитового состава. Этот агрегат образует прожилково-вкрапленные образования, приуроченные к брекчиевым рудам лежачего бока зоны на Карагемском месторождении и к лежачему боку Западной зоны Каракульского месторождения. Для агрегата характерно наличие апатита и монацита, что указывает на редкоземельную специализацию ранних

^{*} АГАО (Бийск); ** ВСЕГЕИ (Санкт-Петербург)

	Таблица	1

Содержание редкоземельных элементов в апатитах I (1) и II (2) генерации

Элемент,	Месторождение								
отноше-	Караку	льское	Карагемское						
ния	1	2		2					
Y	4623	910,1	3910,4	3452,8	576,38				
La	3224	300,2	3000,1	3122,9	290,5				
Ce	5626	275,5	6275,8	4776,3	342,2				
Pr	142,2	115,7	125,7	119,6	123,1				
Nd	478,1	375,3	475,4	259,9	410,7				
Sm	76,3	52,3	72,3	61,1	71,55				
Eu	92,6	57,4	67,4	60,4	10,22				
Gd	135,7	106,7	126,7	122,91	101,21				
Tb	18,8	13,4	16,4	8,51	10,15				
Dy	128,2	107,8	117,8	49,7	10,71				
Ho	15,23	9,5	10,5	9,9	8,15				
Er	Er 35,3		25,5	20,5	13,43				
Tm	Tm 7,2 4,9		5,9	4,12					
Yb	33,1 17,		27,1 22,1		12,36				
Lu	20,6	15,1	25,1	5,73	2,6				
∑РЗЭ	9030,33	2376,5	14282,1	12096,56	1987,38				
La/Sm _N	25,89	3,52	25,42	31,31	4,93				
La/Yb _N	64,33	11,59	73,09	93,35	30,8				
Eu/Eu [*] 0,201 0,168		0,156	0,026						

Примечания.

1. Анализы выполнены в лаборатории ИМГРЭ (Москва) методом ICP-MS.

2. Нормализация некоторых РЗЭ проведена относительно концентраций в хондрите по [4].

3. $Eu^* = (Sm_N + Gd_N)/2$.

стадий арсенидно-никель-кобальтовых месторождений. Апатит в обоих случаях относится к фторапатиту [3] с очень высокими концентрациями суммы редких земель (табл. 1).

В апатите I генерации очень высокие соотношения легких РЗЭ к средним и легких к тяжелым, II генерации – несколько меньше.

Макроскопически это ороговикованные алевролиты и песчаники либо турмалин-кварцевые метасоматиты, содержащие тонкую, иногда с трудом различимую вкрапленность рудных минералов (примерно 15–20 %). Они распространены в основном в виде оторочек вокруг прожилковых и массивных руд и имеют мощность от первых десятков сантиметров до первых метров. Внешние границы их представляют собой постепенные переходы и устанавливаются лишь по результатам анализа проб. Протяженность по простиранию этих участков не установлена.

Именно в рудах этого типа нами обнаружены ранее не изученные кварц-апатит-биотитовые метасоматиты и прожилково-вкрапленное никельарсенидное оруденение (см. рисунок). Следует указать, что в составе метасоматитов и прожилково-вкрапленных руд широко распространен редкоземельный апатит в ассоциации с вкрапленностью ортита и монацита. Эта ассоциация минералов является также новым типом редкоземельной минерализации на обоих месторождениях. Тесная пространственная связь указанных метасоматитов и руд свидетельствует о сближенности времени их образования. Температура кристаллизации минералов околорудных метасоматитов и кварцев рудных ассоциаций варьирует от 320 до 510 °C, что отвечает грейзенам.

Метасоматиты. Дорудный кварц-биотитовый агрегат представлен преимущественно кварцем и биотитом, к которым добавляются в переменных количествах хлорит, актинолит, тремолит, альбит, апатит I генерации, местами в агрегате отмечаются единичные выделения турмалина и сфена. В брекчиевых рудах на контактах обломков измененных алевролитов и цемента, представленного различными жильными минералами, образуются биотит, тремолит, актинолит или хлорит в ассоциации с альбитом и кварцем І генерации. Общая последовательность кристаллизации минералов по характеру границ и коррозионным взаимоотношениям индивидов представляется следующей: кварц I – (биотит, актинолит, тремолит) или хлорит, альбит в ассоциации с апатитом I и турмалином I.

Кварц I генерации наблюдается в виде изометричных зерен с формированием гетерогранобластовой микроструктуры (с размером зерен 0,1-0,5 мм) или стебельчатых выделений (от 0,02×0,2 до 0,05×0,6 мм). Как правило, ранний кварц несет следы дробления и давления, обладает волнистым и блоковым погасанием и содержит обильные газово-жидкие включения размерами в несколько десятков микрон, отчего поверхность зерен кварца І генерации кажется «запыленной». Местами в составе сложных включений отмечаются не идентифицированные твердофазовые включения на Каракульском месторождении и дисульфидные образования – на Карагемском. Кварц I корродируется биотитом, актинолитом, тремолитом, апатитом, турмалином, при этом изредка наблюдаются удлиненно-призматические выделения турмалина ранней генерации.

Биотит образует чешуйчатые выделения размерами 0,1–2 мм с совершенной спайностью, заметно плеохроирующий от почти бесцветного до светло-зеленоватого. Местами чешуйки биотита образуют анхимономинеральные скопления размерами до 1 см.

Нередко среди биотита отмечаются единичные выделения сфена размерами до 0,01×0,06 мм и более, частые удлиненно-призматические кристаллы апатита размером до 0,1×1,5 мм. Отчетливо видна коррозия апатитом биотита. Иногда содержание апатита может достигать 1–4 %.

На классификационной диаграмме биотит Каракульского месторождения относится к ряду флогопит-аннита с небольшими колебаниями содержаний железа [1, 2]. Биотит в этом агрегате хлористый и показывает различную кислотность среды кристаллизации в зависимости от ассоциации с различными арсенидами никеля. Так,

Апатит-кварц-биотитовый метасоматит с As-Co-Ni минерализацией (шлиф 667-4). Фото шлифа: а – при параллельных николях; б–г – в отраженном свете; цифры около крестиков – номера микрозондовых анализов минералов (см. табл. 1, 2)

а – кварц (1), биотит (2), апатит (3); б – серый матрикс – биотит (4), черные крупные включения – кварц, светлосерые удлиненно-призматические кристаллы – апатит (5), белые включения (6, 7) – хлоантит, 8 – герсдорфит; в – включения биотита (9) и апатита (11) в герсдорфите (10, 12); г – хлоантит(16)-герсдорфитовый (13, 14) прожилок в центральной части с аннабергитом (15)

в ассоциации с хлоантитом и герсдорфитом кислотность среды минералообразования была ниже, а следовательно, выше щелочность (потенциал ионизации биотита составлял 184 усл. ед., что способствовало повышению значения Al^{VI} в октаэдрической позиции биотита до 0,56). В ассоциации никелевых арсенидов с участием аннабергита кислотность среды минералообразования резко повышалась (потенциал ионизации биотита достигал 189,1 усл. ед. с одновременным снижением доли Al^{VI} в октаэдрической позиции слюды до 0,16).

Состав амфибола на классификационной диаграмме строго отвечает полю актинолита [1, 2]. Тремолит и актинолит, как правило, встречаются в ассоциации с биотитом. Они образуют скопления размерами до 0,5 см, в которых индивидуальные выделения формируют удлиненные призмы и иглы размерами от 0,005×0,2 до 0,1×0,5 мм. С биотитом оба минерала образуют взаимокоррозионные границы. Актинолит кристаллизовался раньше тремолита, который преобладает и нередко формирует мономинеральные скопления призмочек размерами 0,05×0,3 мм, «диабазово» расположенных с образованием нематобластовой структуры. Изредка актинолит отмечается в виде спутанно-волокнистых муаровых скоплений с редкими иглами актинолита размерами до 0,05×0,7 мм со слабым плеохроизмом в зеленоватых оттенках.

Хлорит имеет слабо зеленоватую окраску, образует гнезда и изредка отдельные зерна, характеризуется округлыми выделениями (размерами до 0,7 мм) с радиально-лучистым и секториальным погасанием. Плагиоклаз на Каракульском месторождении встречается не повсеместно и образует таблитчатые выделения (размерами 0,1–0,3 мм в поперечнике) нередко с полисинтетическим двойникованием и диагностируется альбитом № 8–9. Местами он слабо пелитизирован. На Карагемском месторождении альбит редок, но часто отмечается ортоклаз в индивидах размерами 0,2–0,5 мм.

Турмалиниты представляют собой кварцтурмалиновые, турмалин-кварцевые и существенно турмалиновые разности, образующие линзо-пластообразные тела мощностью от первых до 200 м, протягивающиеся в виде полос на расстояния до 3 км по простиранию и сотни метров по падению. Установлен преимущественно послойный (близмеридиональный) характер залегания турмалинитов. Иногда отмечается остросекущее (к слоистости) положение небольших линз турмалинитов в мощных пачках песчаников, в единичных случаях – субширотное. Чаще всего турмалинизации подвергаются горизонты и пачки песчаников. При выклинивании турмалинитов на их продолжении нередко фиксируются зоны тектонических трещин.

К наиболее раннему рудному этапу следует относить образование кварц-апатит-хлоантитгерсдорфит-аннабергитового агрегата в ассоциации с турмалином II генерации, биотитом, апатитом II генерации, иногда с калиевым полевым шпатом, биотитом и монацитом. Этот агрегат наблюдается в виде прожилковидных обособлений и прожилков, секущих минералы дорудных метасоматитов кварц-биотитового состава. В нем последовательность минералообразования выглядит следующим образом: (апатит II, турмалин II) – кварц II – сульфиды (хлоантит, герсдорфит, аннабергит, пирит I). Наиболее ранний из них апатит II образует, в отличие от ранней генерации, зерна с изометричными сечениями размерами 0,1-0,3 мм, которые корродируются и пересекаются в виде тонких прожилков пиритом сливным тонкокристаллическим («шариковой» микроструктуры), без выделения отдельных кристаллов.

Состав никелевых минералов Каракульского месторождения (мас. %)

Характерная его особенность – высокая температура декрепитации (390–450 °C) и не стехиометрическое соотношение железа и серы. По двум пробам отмечен дефицит серы в составе дисульфида железа (FeS_{1.83–1.86}).

Чаще всего апатит наблюдается на контакте прожилков сульфидов описываемого агрегата с дорудным или на продолжении прожилков сульфидов среди минералов дорудного агрегата.

Турмалин II генерации наблюдается в виде изометричных зерен размером 0,05–0,1 мм, как и апатит, – на продолжении выклинивающихся прожилков сульфидов.

Кварц II генерации отмечается внутри прожилков сульфидов. Он кристаллизовался в виде мелких (0,02–0,08 мм) выделений, в отличие от кварца I генерации выглядит более «свежим» и прозрачным и характеризуется гораздо меньшим количеством газово-жидких включений и нормальным погасанием.

Монацит отмечается в единичных зернах на контакте кварца II генерации и пирита I генерации. Размеры выделений монацита достигают 0,01 мм.

Биотит встречается редко и локализуется среди пирита I генерации в виде отдельных чешуек размером до 0,2 мм. Плеохроирует от светложелтого до бурого.

В сложных зональных прожилках арсенидов никеля выделяется четкая последовательность кристаллизации от хлоантита к герсдорфиту и аннабергиту. При этом хлоантит образует гипидиоморфные выделения размерами от 0,2 до 1,2 мм, нередко замещаемые сульфоарсенидами никеля.

Герсдорфит корродирует кристаллы хлоантита и формирует аллотриоморфнозернистые агрегаты зерен размерами 0,1–0,9 мм.

Аннабергит локализуется в центре таких зональных прожилков и кристаллизуется в виде аллотриоморных зерен размерами 0,3–1,3 мм. Химический состав арсенидов никеля представлены в табл. 2.

Пиритовый агрегат характеризуется мелкими выделениями в тонком срастании с кварцем. В ре-

	Хлоантит		Герсдорфит			Аннабергит			
Состав	Номера точек измерений								
	26	7	16	8	10	12	13	34	15
0	0	0	0	0	0	0	0	0	38,95
S	0	0	0	17,22	15,35	18,03	17,24	18,1	0
Fe	0,26	0	0	5,83	6,47	0,79	4,36	0,23	0
Co	0	0	0	0,63	1,33	0	0,4	0	0
Ni	45,57	44,84	43,94	27,51	25,46	33,85	28,93	33,37	26,82
As	51,82	53,12	51,08	50,08	48,33	39,75	46,85	43,82	22,42
Sb	1,55	1,58	1,83	0	0	3,98	0,64	4,47	0,59
Сумма	99.2	99,54	96,85	101,27	96,94	96,4	98,42	99,99	88,78

Примечания. 1. Пробы 26 и 34 – Карагемское месторождение, остальные – Каракульское. 2. Определение состава минералов проводилось в прозрачно-полированных шлифах на приборе CamScan MX2500 с энергодисперсионным микроанализатором LINK Pentafet (Oxford Instr.) в лаборатории ВСЕГЕИ (Санкт-Петербург).

№ 4(12) ♦ 2012

зультате травления раннего пирита выявлена его «шариковая» микроструктура с размерами «шариков» менее 0,1 мм. Следует отметить, что агрегат этого пирита визуально очень похож на пирротин, который и описывался ранее при изучении этих руд. Диагностика его выполнена в лаборатории Санкт-Петербургского горного института на рентгеновском порошковом дифрактометре XRD-7000 («Shimadzu», Япония), который показал четкие пики, отвечающие пириту.

Пирротин образует зерна размером до 0,25 мм, имеющие скелетную структуру и четкую анизотропию. Нередко образует гетерогранобластовый агрегат мелких (0,02–0,05 мм) выделений неправильной формы. В крупных выделениях пирротина отмечаются мелкие (0,01–0,02 мм) зерна пентландита, виоларита, линнеита. Фазовым анализом установлено, что в пирротине 87 % гексагональной и 13 % моноклинной фазы.

Марказит развивается по пирротину, образует округлые выделения размером от 0,006 до 0,3 мм. Тесно ассоциирует с халькопиритом, пиритом, имеет микропластинчатую структуру.

Кварц-альбит-шеелитовый тип руд – основная вольфрамовая минерализация, связанная с микропрожилками, секущими турмалиниты. Шеелит образует зерна размером 0,05–0,4, редко до 1 мм, тесно ассоциирует с кварцем. Он образует тонкую вкрапленность, реже нитевидные прожилки.

Следующим по времени кристаллизации является кварц-халькопирит-глаукодот-кобальтиновый агрегат, образующий прожилки и гнезда в раннем пирите и пирротине.

Кварц III генерации прозрачен, почти лишен газово-жидких включений, обладает нормальным погасанием и редко обнаруживается в краевых частях халькопирита, кобальтина и глаукодота.

Халькопирит образует зерна неправильной формы размером 0,002–0,5 мм; содержит включения висмутина, самородного висмута, глаукодота, редко пирротина. Рентгеноструктурным анализом установлено, что медный колчедан этой генерации представлен смесью двух модификаций (85 % тетрагональной, 15 % неупорядоченной кубической).

Глаукодот формирует идиоморфные, реже ксеноморфные зерна размером 0,02–0,9 мм. Нередки включения халькопирита. В метакристаллах глаукодота встречаются хорошо ограненные кристаллы кобальтина. Иногда в зернах глаукодота отмечаются чешуйчатые включения самородного висмута.

Кобальтин образует идиоморфные кристаллы размерами 0,002–0,05 мм, нередко – вкрапленность в нерудной массе; тесно срастается с глаукодотом. Висмутин и самородный висмут формируют зерна размером 0,03–0,1 мм неправильной и округлой формы, слагающие аллотриоморфные, ксеноморфные агрегаты. Оба минерала часто ассоциируют с халькопиритом.

Кварц-халькопирит-пирротиновый тип руд отвечает позднему этапу и представлен линзовидными и пластообразными телами, залегающими согласно с вмещающими терригенными породами. Пластообразные тела имеют мощность 0,8-10 м и протяженность сотни метров по простиранию. Основными минералами являются пирротин (50-90 %), пирит (12-15 %), халькопирит (20-25 %), кроме того, встречаются арсенопирит, леллингит и акцессорные (галенит, сфалерит, висмутин). Главные компоненты руд – медь (0,3-0,5 %), кобальт (0,02-0,1 %), золото, рассеянные элементы – свинец, цинк и висмут (0,01–0,001 %). Кобальт в качестве примеси входит в состав арсенопирита и леллингита. Концентрация золота колеблется от 0,2 до 0,8 г/т, однако в верхней части арсенопиритовых руд может достигать и 3-5 г/т. Содержание золота в монофракции арсенопирита (по данным атомной абсорбции) 440-480 г/т [5].

Таким образом, на Каракульском и Карагемском месторождениях значительно уточнены состав и характер распределения различных метасоматитов и выявлен новый тип оруденения прожилково-вкрапленного типа, включающий никелевое оруденение самого раннего этапа, а также редкоземельные минералы, ранее здесь не отмечавшиеся.

СПИСОК ЛИТЕРАТУРЫ

1. Гусев, Н. И. Базитовый магматизм и металлогения Юстыдского рудного узла (Юго-Восточный Алтай) [Текст] / Н. И. Гусев, А. И. Гусев // Региональная геология и металлогения. – 2010. – Вып. 42. – С. 90–106.

2. **Гусев, Н. И.** Мультиэтапная магмо-рудно-метасоматическая система месторождения Каракуль (Горный Алтай) [Текст] / Н. И. Гусев, А. И. Гусев // Природные ресурсы Горного Алтая. – Горно-Алтайск, 2009. – № 2. – С. 51–65.

3. **Гусев, А. И.** Полихронное комплексное Cu-Bi-Co-Ni-W месторождение Каракуль Горного Алтая [Текст] / А.И. Гусев, Н.И. Гусев // Руды и металлы. – 2012. – № 1. – С. 33–41.

4. Anders, E. Abundences of the elements: meteoric and solar [Text] / E. Anders, N. Greevese // Geochim. Cosmochim. Acta. – 1989. – Vol. 3. – P. 197–214.

5. **Seltman, R.** Magmatism and metallogeny of the Altai and adjacent Large Igneous Provinces with an introductory essay on Altaids [Text] / R. Seltman, A. Borisenko, G. Fedoseev // IAGOD Guidebook. Series 16. – London : CERCAMS /NHM, 2007. – 294 p.