УДК 553.4.04(571.56-11)

FE-OKCИДНАЯ-CU-AU (IOCG) МИНЕРАЛИЗАЦИЯ НА ВОСТОКЕ ЯКУТИИ (КАК ОСНОВА НАРАЩИВАНИЯ РЕСУРСНОЙ БАЗЫ БЛАГОРОДНЫХ И ЦВЕТНЫХ МЕТАЛЛОВ)

А.В.Костин

Территория Восточной Якутии характеризуется совмещением золотой, серебряной и оловянной минерализации, что обусловлено несколькими этапами становления рудопродуктивного магматизма. Это, безусловно, вносит разнообразие в минеральные типы Fe-оксидных Cu-Au (IOCG) проявлений. Первая находка состоялась в 2011 г.: выявлена Реп-Юреинская аномалия, представленная телом Fe-оксидных брекчий, повторяющих контур кровли Реп-Юреинского массива. По элементному составу она принадлежит к Fe-оксидному-Au-Cu типу. Средние содержания в Fe-оксидных брекчиях Au 1,17 г/т; Ag 98,96 г/т; Fe 15,97 %; Cu 0,53 %. Площадь выхода брекчий около 5,16 км², плотность 2,41–3,23 г/см³ (среднее 2,76). Ресурс руды составляет около 712 млн т при 50 м подвеске. Ресурсный потенциал Au может составить более 800 т, Ag – более 70000 т, Cu – более 350000 т. Выявленное поле рудных брекчий может служить эталонным объектом для обнаружения IOCG проявлений на территории Восточной Якутии.

Ключевые слова: ГИС, IOCG, Fe-оксидной-Au-U-Cu, Реп-Юреинский, месторождения мирового класса.

FE-OXIDE-CU-AU (IOCG) MINERALIZATION IN THE EAST OF YAKUTIYA (AS THE BASIS FOR PRECIOUS AND NONFERROUS METALS RESOURCE BASE UPGRADING)

A.V.Kostin

The territory of Eastern Yakutiya is characterized by combination of gold, silver and tin mineralization that is due to several formation stages of ore-productive magmatism. This fact is undoubtedly diversified mineral types of Fe-oxide Cu-Au (IOCG) shows, their first discovery took place in 2011. The revealed Rep-Yureinskaya anomaly is represented by the body of Fe-oxide breccias, repeating the roof contour of the Rep-Yureinskiy massif. The ultimate composition of discovered natural anomaly belongs to the Fe-oxide-Au-Cu type. Average contents in Fe-oxide breccias include: Au – 1,17 g/t; Ag – 98,96 g/t; Fe – 15,97 %; Cu – 0,53 %. Breccias outcropping area is about 5.16 sq. km, the density varies from 2,41 to 3,23 g/cm³ (average 2.76 g/cm³). Ore resources are about 712 mln.t. at 50 m extrapolation. The resource potential of Au can be more than 800 t., Au – more than 70000 t., Cu – more than 350 000 t. The revealed ore breccias field can serve as a fiducial object for discovery of IOCG-manifestations within the Eastern Yakutiya territory.

Keywords: GIS, IOCG, Fe-oxide-Au-U-Cu, Rep-Yureinskiy, world-class deposits.

Fe-оксидный Cu-Au (IOCG) тип месторождений завоевывает все большую популярность в мире как объект добычи меди, золота, урана и др. Выявление таких месторождений IOCG типа началось с открытия в 1975 г. в Австралии гигантского месторождения Olympic Dam (2 млрд т руды, содержащей 1,1 % Cu, 0,5 г/т Au, 0,4 кг/т U₃O₈, 0,24– 0,45 % La+Ce [10]) и в 1987 г. – La Candelaria в Чили (запасы 470 млн т руды со средним содержанием 0,95 % Cu, 0,22 г/т Au, 3,1 г/т Ag [9]).

ІОСС месторождения характеризуются примерно 20 %-ным содержанием оксидов Fe и дефицитом сульфидов. Рудные тела обычно крупнотоннажные, представлены залежами типа «манто» и сложены брекчиями в зоне экзо- или эндоконтакта гранитоидных плутонов.

Стало очевидно, что месторождения этого типа обладают огромным ресурсом Au и Cu, при этом их нельзя описать в рамках одной генетической модели. Они формировались от архея до мезозоя в разнообразных геодинамических обстановках: внутриконтинентального орогенного коллапса;

 – внутриконтинентального анорогенного магматизма;

 – в зонах субдукции и на континентальных окраинах [7].

Использование интегрированных в ГИСпроекты данных современных космических съемок позволяет выявлять один из наиболее значимых в мировой добыче Cu, Au и U тип месторождений – Olympic Dam, связанный с известково-щелочной магмой и образовавшимися в связи с ней многостадийными брекчиями с гематитовым цементом [5]. Подобные месторождения образуют на поверхности обширные поля специфического ярко-коричневого цвета и отчетливо дешифрируются на снимках Landsat (комбинация каналов 3-2-1) [8].

По данным Геологической службы Канады [5], в суперкрупных ІОСС месторождениях Бразилии, Австралии, Чили и др. экономически целесообразно оценивать ресурсы золота с содержаниями менее 1 г/т и серебра – первые г/т (табл. 1). Это требует не только переоценки многих месторождений

Š

Таблица 1 Ресурсный потенциал суперкрупных месторождений мира

Месторождение	Запас руды,	Cu,	Au,	Ag,	
	млн т	%	г/т	г/т	0
Бразилия					
Salobo	790	0,96	0,52	_	-
Cristallino	500	1	0,3	_	
Sossego	355	1,1	0,28	-	-
Alemao	170	1,5	0,8	—	-
Австралия					
Olympic Dam	2880	1,3	0,5	2,2	0,03
Ernest Henry	61	0,87	0,47	—	-
Candelaria	470	0,95	0,22	3,1	-
Чили					
Manto Verde	230	0,55	0,11	-	-

Восточной Якутии, но и пристального внимания к новому перспективному типу IOCG минерализации. Поскольку проявления этого типа практически не изучались, то цель данной статьи – описание основных характеристик и прогноз перспектив обнаружения месторождений IOCG типа на территории Восточной Якутии.

Главные черты ІОСС месторождений

Время формирования (IOCG) месторождений относительно эволюции Земли не является определяющим фактором [4]. Месторождения образовывались с архея (Salobo и Igarapé Bahia) до мезозоя (Chilean Iron Belt) в широком интервале глубин, поэтому они весьма разнообразны и по характеру минерализации, и по геологическим условиям нахождения. Тем не менее можно выделить некоторые основные черты этих месторождений.

Магматические черты. Все известные IOCG месторождения являются частью большой группы Cu-Au-порфировых месторождений, генетически связанных с высококалиевыми гранитоидными интрузиями магнетитовой серии. На наличие Cu-порфировых корней IOCG месторождений может указывать известково-щелочной тип рудопродуктивного магматизма. Интрузивные породы занимают широкий спектр – от A (anorogenic – продукты плавления нижнекоровых гранулитов или дифференциаты щелочно-базальтоидных магм) до I (igneous – продукты плавления метамагматических субстратов) типов [3, 5, 11] – и по составу относятся к диоритам (гранитам, обогащенным U, F, Мо и REE).

Гидротермальные черты. Все регионы с IOCG месторождениями характеризуются крупными объемами метасоматически измененных пород площадью 10–100 км² и более, включающие Na(Ca)- и К-типы. В большинстве IOCG районов Na(Ca) изменения распространены на больших (100 км² и более) площадях, значительно бо́льших по площади IOCG минерализации. Na(Ca) метасоматоз мобилизует базовые металлы – Fe, Cu, Pb, Zn. Ключевой особенностью IOCG является ассоциация с высококалиевыми гранитоидами [11]. Калиевый метасоматоз мобилизует Cu, Au, U, REE и др., с ним связывается образование основных объемов магнетита или гематита.

Внешние особенности Fe-оксидной минерализации на космоснимках. Использование данных многоспектрального оптико-механического сканирующего радиометра Landsat ETM+ позволяет уверенно выделять площади, содержащие Fe-оксидные руды [8]. Видимые зеленый (0,52– 0,60 мкм) и красный (0,63–0,69 мкм) спектры используются для выявления горных пород богатых двух- (закисным) и трехвалентным (окисным) железом. Также может использоваться тепловой инфракрасный канал (10,40–12,50 мкм) для отображения темных минералов с высокой плотностью, к которым относятся массы гематита и гетита.

Полевыми наблюдениями установлено, что ярко-желтые цвета на космоснимках Landsat 7 (комбинация каналов 3-2-1) соответствуют вкрапленной пиритовой минерализации, окисленной с поверхности (1-й тип). Темно-коричневые оттенки обусловлены окислением редких сульфидных прожилков (2-й тип). Насыщенные яркие коричневые цвета характеризуют Fe-оксидные брекчии с гематитовым цементом и относятся к IOCG типу (3-й тип). Продуктивные на этот тип минерализации плутоны Восточной Якутии показаны в табл. 2.

Таблица 2

Ресурсный потенциал ІОСС продуктивных плу	утонов
Восточной Якутии	

	Пло-	Fe-оксидная минерали- зация (подвеска 50 м)		
интрузивный	щадь,			
массив	KM ²	Площадь, км ²	Руда, млн т	
Ахитанский	2,33	0,20	27,63	
Чалбынский	60,98	1,70	228,90	
Олохтохский	2,44	1,99	268,74	
Болдымбинский	44,54	2,26	305,28	
Джетаньинский	7,84	2,36	318,22	
Кыс-Кюельский	1,33	3,15	424,68	
Кыгыл-Тасский	0,24	3,33	449,43	
Порожно-Цепинский	1505,26	7,86	1061,76	
Маркинский	48,84	7,95	1073,22	
Онньохская группа	4,28	9,25	1249,20	
Сосукчанский	0,40	9,52	1284,95	
Хобояту-Эчийский	159,65	9,59	1294,49	
Хунхадинский	5,38	11,44	1544,40	
Чималгинский	348,81	20,94	2826,59	
Праводжолакагский	117,51	21,24	2867,28	
Левоэрикитский	740,47	41,78	5639,78	
Чугулукский	461,61	50,31	6791,22	
Сууру	84,36	65,47	8838,45	
Верхнетирехтяхский	387,59	68,21	9208,05	
Правотуостахский	1094,45	76,07	10268,96	
Чибагалахский	3763,38	79,15	10685,00	
Хулырынский	26,52	79,23	10695,53	
Этанджинский	15,57	91,54	12357,43	
Нуру	24,53	109,00	14715,30	
Верхнебургалинский	35,23	137,76	18597,90	
Улахан-Нагаинский	27,90	194,01	26191,78	
Дарпирский	340,81	203,95	27533,58	
Хаяргастахский	451,21	327,57	44221,91	
Правоэрикитский	404.57	909.52	122785.76	

Примечание. Площади вычислены средствами ГИС. Оценка ресурсного потенциала проведена автором из расчета плотности 2,7 т/м³. В крупных и хорошо эродированных плутонах Fe-оксидная минерализация присутствует как в интрузивных породах, так и в поле ороговикованных вмещающих пород. Для слабо эродированных, небольших по площади выхода плутонов характерно общее поле Fe-оксидной минерализации, однородное по цвету и минеральному составу. ГИС-технологии позволяют выявлять рудно-магматические узлы с проявлением перспективной Feоксидной минерализации [1] (рис. 1).

Минерализация. Специфическая особенность месторождений – малосульфидный состав руд и развитие гематит-гетитового парагенезиса. Общее содержание железа в рудах может достигать 20 % и более. Малые глубины формирования IOCG месторождений способствуют образованию рудных брекчий с гематитовым цементом и вкрапленной минерализацией, аналогичной многим порфировым Си-Аи месторождениям [11]. На больших глубинах магмафлюидные системы не могут генерировать достаточно механической энергии для дробления вмещающих пород, а IOCG минерализация может сменяться порфировой с Си-Аи, Си-Мо или Мо±W специализацией. Плутоны Восточной Якутии, в связи с которыми обнаружена Feоксидная минерализация, как правило, могут нести дополнительное серебряное оруденение.

Медь и золото. Для анализа потенциала интрузий на Au-Cu и Cu-Mo минерализацию использовалась модель медно-порфировых месторождений Монголии [6] в которой K₂O/Na₂O отношение в интервале от 0,3 до 0,7 соответствует Cu-Mo, а от 0,7 до 1,3 – Au-Cu рудно-магматическим системам. Потенциально перспективные на Au-Cu оруденение интрузии относятся к высококалиевым известково-щелочной и шошонитовой сериям.

Алгоритм фильтрации плутонов основывается на запросе вида:

• для перспективных Си-Мо плутонов: K₂O/ Na₂O Between 0,3 And 0,7;

• для перспективных Cu-Au плутонов: K_2O/Na_2O Between 0,7 And 1,3.

Уран. На примере месторождений Австралии показано, что U-содержащие интрузивные породы глобально важны, а их валовый состав играет важную роль в геохимическом поведении урана в магматических системах [12]. Наибольшие его концентрации отмечены на графиках:

Рис. 1. Модель перспективного на IOCG минерализацию Верхнебургалийского рудно-магматического узла (использован снимок Landsat, комбинация каналов 3-2-1)

1 – трещиноватые ороговикованные породы с Fe-оксидным цементом; 2 – брекчированные ороговикованные породы с гематитовым цементом (Fe-оксидные Cu-Au-Ag руды); 3 – клиновидные трещины в ороговикованном гранодиорите с гематитовым цементом (Fe-оксидные Cu-Au-Ag руды); 4 – гранодиорит-порфир с вкрапленной халькопиритовой или арсенопиритовой минерализацией (Au-Cu-порфировые руды); 5 – гранодиорит; 6 – выход Верхнебургалинского плутона на дневную поверхность; 7 – Cu-Au-Co-Bi скарны; 8 – регенерированная Au-кварцевая жила

№ 4(20) ♦ 2014 -

ASI – U: индекс ASI от 0,9 до 1,2;

(Na_2O+K_2O)/Al_2O_3 – U: агпаитовый индекс от 0,6 до 1,0.

Рудно-магматические узлы (РМУ) Восточной Якутии с ЮСС минерализацией

Первая находка руд ІОСС типа в Восточной Якутии была сделана в 2011 г. в Реп-Юреинском рудно-магматическом узле [8]. Тщательный анализ выявленных руд и ревизия коллекционного рудного материала, собранного в различных рудно-магматических узлах Восточной Якутии, показала, что в некоторых из них Fe-оксидные±(Cu-Au) руды не были ранее диагностированы (рис. 2). Заверка полевыми работами Fe-оксидной минерализации Эндыбальского, Кис-Кюельского, Чуруктинского и Супского массивов, выделенных по модели Gerel O. [6] как высокоперспективные, также подтвердила ее наличие.

Реп-Юреинский РМУ (с. ш. 63,57°, в. д. 143,28°) сложен терригенными отложениями верхоянского комплекса (T₂-J₃), прорванными редкими дайками долеритов (J₃) и небольшими интрузивами гранодиорит-гранитного комплекса (Ј₃-К₁): Курдатский и Эргеляхский ряды, секущие складчатые структуры. Продуктивная минерализация Feоксидных брекчий пространственно приурочена к Реп-Юреинскому и Заохренному интрузивам, завершающим с запада Эргеляхский ряд плутонов. В контурах брекчий известны гидротермальные образования золотомышьяково-сульфидного вкразолотокварцевого малосульфидного, пленного, золоторедкометалльного и золотосурьмяного минеральных типов, не имеющие самостоятельного значения.

Реп-Юреинский интрузив вскрывается на высотной отметке 1150 м, находится в начальной стадии эрозии. Прорывает раннеюрские терригенные отложения и представлен цепочкой из шести небольших по площади выходов (0,1-0,3 км², общая площадь 1,2 км²) порфировых интрузий, вытянутых в долготном направлении и локализованных в едином поле ороговикованных пород. Над не вскрытым эрозией Реп-Юреинским плутоном по установлено поле гидротермально-измененных пород, представленное брекчиями с Fe-оксидным и арсенопиритовым цементом. По данным рентгенофазового анализа (дифрактометр D2 PHASER Bruker, аналитики Н. В. Заякина, Т. Ф. Тронина) основные минералы цемента брекчий – гематит и гетит, магнетит не установлен. Вкрапленные рудные минералы представлены халькопиритом и арсенопиритом. Во всех типах брекчий обломки имеют округлые формы - результат растворения в агрессивных гидротермальных растворах. В составе обломков присутствуют граниты ранней фазы и ороговикованные породы зоны экзоконтакта.

Заохренный интрузив площадью 0,13 км² прорывает терригенные породы норийского яруса Т₃. Вскрывается на высотной отметке 940 м, находится в средней стадии эрозии и представлен одним небольшим по площади выходом хорошо раскристаллизованных гранодиоритов. Плутон обрамляется полем ороговикованных пород с разноориентированными прожилками пирита, пирротина и арсенопирита, Fe-оксидные брекчии отсутствуют. В гранодиоритах отмечается вкрапленная халькопиритовая минерализация, участками содержания Си достигают 2,5 %.

Нюектаминский РМУ (65,80°; 129,59°) приурочен к сводовой части Имтанджинской антиклинали и располагается от устья р. Кысыл-Тас до среднего течения р. Чочимбал. Сложен алевролитами и разнозернистыми песчаниками имтанджинской, солончакской и кыгылтасской свит С2-3-Р1. В пределах РМУ Д. И. Гуторович и В. Т. Изаров в 1966 г. в результате аэромагнитных работ установили крупную аномальную зону, которая интерпретируется как кровля невскрытого штока гранодиоритов. В ее контурах присутствуют три глубинных выступа апикальной части единого магматического образования. Поверхность выступов неоднородная, характеризуется куполовидной формой, вершинная часть которой обнажается в устье руч. Пирротиновый, и известна как Кыгыл-Тасский плутон. Площадь его выхода составляет 0,24 км², к ней приурочена молибденитовая минерализация.

К кровле штока приурочено обширное поле контактово-метаморфизованных сульфидизированных пород, участками брекчированных и сцементированных оксидами Fe. Первые сведения об их рудоносности появились в 1934 г. (работы экспедиций «Союзникельоловоразведки» с 1933 по 1947 гг.): описывая результаты геолого-разведочных работ на Кыгылтасском месторождении, Н. Н. Стронский приводит средние содержания металлов в этих рудах (Ag 21,86 г/т, Au 1,12 г/т) и запасы металлов (2045,5 т Ag и 104,8 т Au). С учетом сложности рельефа и контуров выхода этих руд запасы были подсчитаны при подвеске не более 15 м. Впоследствии руды не изучались.

В рудной зоне «Позолота», удаленной от поля контактово-метаморфизованных пород, известно штокообразное рудное тело длиной 50 м и мощностью до 26 м, сложенное молочно-белым друзовидным кварцем с гетитовым цементом и содержащим от 1,2 до 19,8 г/т золота и менее 1 г/т серебра.

Эндыбальский РМУ (65,67°; 130,12°) расположен в ядре Эндыбальской антиклинали, сложен песчаниками кыгылтасской свиты (C₃-P₁), прорванными Эндыбальским субвулканом (площадь выхода 1,2 км²). Магматические образования представлены дацитовыми и риолитовыми порфирами, их брекчиевой субфацией и роем даек, большая часть которых ориентирована в долготном направлении.

Аu-Cu-Mo руды приурочены непосредственно к Эндыбальскому субвулкану. По нашим данным, основная масса рудных прожилков сложена квар№ 4(20) **◆** 2014

№ 4(20) ♦ 2014 —

(

цем, арсенопиритом, халькопиритом и молибденитом при второстепенном значении висмутина, густавита и сульфотеллуридов серебра. На участке развития эруптивных брекчий Эндыбальского субвулкана присутствуют брекчиевые руды с гетитовым цементом, оценка которых не проводилась.

Си-Мо минерализация связана с формацией молибденоносных вторичных кварцитов, приуроченных к риолитам восточного фланга Эндыбальского субвулкана. Прослеживается вдоль правого борта р. Сирилендже на 900 м. По данным атомноабсорбционного анализа проба 5723 из медно-молибденовых руд показала следующие содержания: Au 0,014 г/т, Ag 3,6 г/т, Mo 0,059 %, Cu 0,041 %, Pb 0,051 %, Zn 0,031 %. Отношение Cu/Mo в руде составляет 0,69.

Аu-Cu-(As) (арсенопирит-халькопирит-пиритовые) прожилки пространственно сближены с Cu-Мо и по результатам бороздового опробования содержат 0,6–8,7 г/т Au, 0,076–5,56 % Cu. В штуфной пробе 2666/1 (левый борт руч. Порфировый) содержание Au – 19,4 г/т, Ag – 172,2 г/т. В пробах центральной части участка Порфировый содержания Au и Ag составляют соответственно: проба 2603 – 1,7 и 38,2; проба 2640 – 7,5 и 50,4; проба 2641 – 9,6 и 20,0; проба 2150 – 8,4 и 63,3 г/т. Самородное золото в рудах не обнаружено.

Cu-Ag-Pb-Zn-(Sb) минерализация распространена от поля роговиков до сульфидизированных песчаников. Граница этой зоны условно проводится по аномалии магнитного поля, характеризующегося нулевым значением. Cu-Ag-Pb-Zn месторождение Вертикальное приурочено к дайке базальтового трахиандезита. Руды характеризуются широким развитием блеклой руды с различной степенью сереброносности и практически полным отсутствием таких сульфосолей серебра, как стефанит, пираргирит, миаргирит, диафорит. Повсеместно присутствует халькопирит, а между Си и Ад отмечается положительная корреляционная связь. Оловоносность руд определяется канфильдитом и станнином, которые находятся в тесном срастании с серебросодержащей блеклой рудой.

Все остальные проявления Эндыбальского рудного узла удалены от магматических образований.

Кис-Кюельский РМУ (65,50°; 130,28°) расположен в восточном крыле Эндыбальской антиклинали и сложен отложениями кыгылтасской, хорокытской и эчийской свит С₃-Р₁. Магматические образования представлены Кис-Кюельским штоком площадью 1,5 км² и серией даек риолитов, дацитов, андезитов и долеритов, которые ороговокованы Кис-Кюельским штоком. Строение штока неоднородное. Его центральная часть сложена гранитами, периферийная – диоритами. Шток слабо эродирован, на его кровле сохранились останцы ороговикованных песчаников.

Рудные тела локализованы непосредственно в контурах Кис-Кюельского штока и представлены несколькими типами руд:

• Fe-оксидный – сильно измененный гранодиорит красно-коричневого цвета (Au до 4,6 г/т; Ag 620 г/т; Cu 0,039 %; Pb 32,06 %; Zn 0,25 %); в рудах постоянно отмечаются малахит и азурит, часто встречается самородное золото, размеры золотин не превышают 1 мм;

 Ад-Рb-Сu-кварцевый – серии сближенных галенит-халькопирит-кварцевых жил (Ад 22,4– 3680 г/т; Сu 0,014–0,53 %; Рb 0,1–81,63 %; Zn 0,07– 3,42 %);

• Ag-Pb – зоны брекчий в эндо- и экзоконтактах интрузива (Ag 920 г/т; Cu 0,028 %; Pb 31,42 %; Zn 0,22 %).

Чуруктинский РМУ (63,67°; 143,08°) находится в терригенных породах карнийского и норийского ярусов (T₃), прорванных интрузией сиенитов Чуруктинского массива площадью 2,24 км². Вокруг сиенитов ороговикованные породы образуют кальдерообразную структуру, которая рассекается серией радиальных разломов.

В контурах массива установлена Cu-Mo и Mo-W минерализация штокверкового типа, вытянутая вдоль его северной границы на 900 м при ширине 250 м. Минерализация представлена прожилково-вкрапленным типом, приурочена как к разноориентированным кварцевым прожилкам, так и к сиенитам, в которых молибденит и вольфрамит образуют вкрапления и гнезда, выполненные тонкочешуйчатыми агрегатами размером от долей мм до 1 см. Халькопирит вместе с пиритом образуют овальные по форме обособления, напоминающие формой ликвационные.

Супский РМУ (63,07°; 139,16°) располагается в отложениях верхней перми (менкеченская, чамбинская и имтачанская свиты), прорванных Супским плутоном, который представлен кварцевыми монцонитами, монцодиоритами, сиенитами и диоритами. В монцонитах отмечается вкрапленная

Рис. 2. Типовые образцы порфировых и Fe-оксидных руд

1 – брекчированные ороговикованные песчаники зоны экзоконтакта Реп-Юреинского массива, сцементированные золотосодержащим арсенопиритом; 2 – брекчированные ороговикованные песчаники зоны экзоконтакта Реп-Юреинского массива, сцементированные гидрооксидами железа; 3 – золотосодержащие руды проявления «Позолота» Нюектаминского рудного узла, сложенные друзовидным кварцем с гетитовым цементом; 4 – эруптивная брекчия Эндыбальского субвулкана с гетитовым цементом; 5 – Кыс-Кюельский массив: брекчированный гранодиорит с Feoксидным цементом; 6 – экзоконтакт Кыс-Кюельского массива: брекчированный ороговикованный песчаник с Feoксидным и сульфидным цементом; 7 – малахитовые корки на гранодиорите Кыс-Кюельского массива; 8 – гранодиорит Супского массива: порфировая арсенопирит-халькопиритовая минерализация, окисленная с поверхности. Арс – арсенопирит, Ро – роговик; Fe-ох – оксиды железа; Кв – кварц; Ге – гематит; Гд – гранодиорит; Мл – малахит

сульфидная (арсенопиритовая и халькопиритовая) минерализация (до 10 % от объема породы).

Основное тело плутона имеет асимметричную форму, площадь около 4 км². В левом борту руч. Суп имеются несколько мелких апофиз, которые объединены с основным выходом общим полем ороговикованных пород. Роговики метасоматически и гидротермально изменены. Вблизи массива разные исследователи отмечали наличие «окисленных» руд, которые детально никем не были изучены и могут на самом деле представлять первичные Fe-оксидные руды в зоне экзоконтакта плутона. Дешифрирование космоснимков Landsat (спектральная комбинация 3-2-1) показывает наличие в самом массиве и на его флангах Fe-оксидной минерализации.

Выводы

1. Восточная Якутия имеет значительный потенциал для наращивания ресурсной базы благородных и цветных металлов за счет успешных находок новых Fe-оксидных Cu-Au (IOCG) проявлений. Значительный объем их рудных масс позволяет прогнозировать ресурсы золота в сотни и тысячи тонн металла. Общая металлогеническая специализация Восточной Якутии на серебро отразилась на комплексности IOCG руд: серебро – важный составной элемент, формирующий большой ресурсный потенциал.

2. Первая на территории восточной Якутии аномалия IOCG типа обнаружена в кровле Реп-Юреинского интрузива в полевой сезон 2011 г. Проявление имеет Au-Ag-Cu специализацию и характеризуется крупным ресурсным потенциалом золота и серебра, что позволяет рассматривать ее как эталонный объект для выявления аналогов.

3. Наличие Fe-оксидной минерализации отчетливо устанавливается по снимкам Landsat 7 (комбинация каналов 3-2-1) и Landsat 8 (комбинация каналов 4-3-2). Fe-оксидными рудами сложены крупные горные массивы, часть ее относится к Feоксидному Cu-Au типу. Выявленные проявления должны заверяться полевыми работами.

4. Интрузивные породы могут нести Au, Ag и Cu минерализацию. Продолжение исследований IOCG типа оруденения должно быть связано с изучением характера ассоциирующих интрузивных образований.

СПИСОК ЛИТЕРАТУРЫ

1. **Костин, А. В.** Fe-оксидная Cu-Au (IOCG) минерализация Восточной Якутии на примере Реп-Юреинской рудно-магматической системы [Текст] / А. В. Костин // Отечественная геология. – 2013. – № 5. – С. 3–10.

2. **Тектоника**, геодинамика и металлогения территории Республики Саха (Якутия) [Текст] / Отв. ред. Л. М. Парфенов, М. И. Кузьмин. – М. : МАИК «Наука/Интерпериодика», 2001. – 570 с. 3. **Corriveau, L.** Mineral Deposits of Canada: Iron Oxide Copper-Gold Deposits: A Canadian Perspective [Text] / L. Corriveau // W. D. Goodfellow et al., Mineral deposits of Canada: A Synthesis of Major Deposit-Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods: Geological Association of Canada, Mineral Deposits Division, Special Publication. – 2007. – N 5. – P. 307–328.

4. **Exploration** for iron oxide copper gold deposits in Zambia and Sweden; Comparison with the Australian experience [Text] / B. Nisbet, J. Cooke, M. Richards, C. Williams // Porter, T. M., ed., Hydrothermal iron oxide copper-gold and related deposits: A global perspective. – Adelaide, PGC Publishing, 2000. – Vol. 1. – P. 297–308.

5. **Gandhi, S. S.** Magmatic-hydrothermal Fe oxide±Cu±Au deposits: classification for a digital database and an overview of selected districts [Electronic resource] / S. S. Gandhi // IAVCEI General Assembly. Chile. – Pucón, 2004. – CD-ROM, Abstracts01a pt 169.

6. **Gerel, O.** Mineral resources of the western part of the Mongol-Okhotsk Foldbelt [Text] / O. Gerel, S. Ishihara, G. K. Czamanske // Resource Geology Special Issue. – 1995. – Vol. 18. – P. 151–157.

7. **Hitzman, M. W.** Geological characteristics and tectonic setting of Proterozoic iron oxide (Cu-U-Au-LREE) deposits [Text] / M. W. Hitzman, N. Oreskes, M. T. Einaudi // Precambrian Research. – 1992. – Vol. 58. – P. 241–287.

8. **Kostin, A. V.** Iron-Oxide Cu-Au (IOCG) Mineralizing Systems: Eastern Yakutia Perspective [Text] / A. V. Kostin // Journal of Environmental Science and Engineering. David Publishing Company. – 2012. – N 9. – P. 1045–1053.

9. **Marschik, R.** La Candelaria and the Punta del Cobre district, Chile [Text] / R. Marschik, R. A. Leveille, W. Martin // Early Cretaceous iron-oxide Cu-Au (-Zn-Ag) mineralization, in Porter, T. M., ed., Hydrothermal iron oxide copper-gold and related deposits: A global perspective. – Adelaide : PGC Publishing, 2000. – Vol. 1. – P. 163–175.

10. **Orris, G. J.** Rare earth element mines, deposits, and occurrences [Text] / G. J. Orris, R. I. Grauch // USGS. – 2002. – Open-File Report 02-189. – 174 p.

11. **Pollard P. J.** Evidence of a magmatic fluid source for iron oxide-Cu-Au mineralisation [Text] / P. J. Pollard // Porter, T. M., ed. Hydrothermal iron oxide copper-gold and related deposits: A global perspective. – Adelaide : PGC Publishing, 2000. – Vol. 1. – P. 27–41.

12. **Schofield, A.** Uranium content of igneous rocks of Australia 1:5 000 000 maps [Text] / A. Schofield // Explanatory notes and discussion. Geoscience Australia, Record. -2009. - N 17. -20 p.

REFERENCES

1. Kostin A.V. [Fe-oxide Cu-Au (IOCG) mineralization in Eastern Yakutiya using the example of RepYureinskaya ore-magmatic system]. *Otechestvennaya geologiya* – *National Geology*, 2013, no. 5, pp. 3–10. (In Russ.).

2. Parfenov L.M., Kuzmin M.I., exec. eds. *Tektonika, geodinamika i metallogeniya territorii Respubliki Sakha (Yakutiya)* [Tectonics, geodynamics and metallogeny of the Sakha Respublic (Yakutiya) territory]. Moscow, MAIK Nauka/Interpereodika Publ., 2001. 570 p. (In Russ.).

3. Corriveau L. Mineral Deposits of Canada: Iron Oxide Copper-Gold Deposits: A Canadian Perspective. Goodfellow W.D., et al., *Mineral deposits of Canada: A Synthesis of Major Deposit-Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods: Geological Association of Canada, Mineral Deposits Division, Special Publication,* 2007, no. 5, pp. 307–328.

4. Nisbet B., Cooke J., Richards M., Williams C. Exploration for iron oxide copper gold deposits in Zambia and Sweden; Comparison with the Australian experience. *In Porter, T.M., ed., Hydrothermal iron oxide copper-gold and related deposits: A global perspective.* Adelaide, PGC Publishing, 2000, vol. 1, pp. 297–308.

5. Gandhi S.S. Magmatic-hydrothermal Fe oxide±Cu±Au deposits: classification for a digital database and an overview of selected districts: IAVCEI General Assembly 2004, Pucón, Chile, CD-ROM, Abstracts 01a_pt_169. 6. Gerel O. Mineral resources of the western part of the Mongol-Okhotsk Foldbelt. *In Ishihara S. & Czamanske G. K. eds. Resource Geology Special Issue*, 1995, no. 18, p. 151–157.

7. Hitzman M., Oreskes N., Einaudi M.T. Geological characteristics and tectonic setting of Proterozoic iron oxide (Cu-U-Au-LREE) deposits. *Precambrian Research*, 1992, vol. 58, pp. 241–287

8. Kostin A.V. Iron-Oxide Cu-Au (IOCG) Mineralizing Systems: Eastern Yakutia Perspective. *Journal of Environmental Science and Engineering*. David Publishing Company, 2012, no, 9. pp. 1045–1053.

9. Marschik R., Leveille R.A., Martin W. La Candelaria and the Punta del Cobre district, Chile: Early Cretaceous iron-oxide Cu-Au (-Zn-Ag) mineralization. *In Porter, T. M., ed. Hydrothermal iron oxide coppergold and related deposits: A global perspective.* Adelaide, PGC Publishing, 2000, vol. 1, pp. 163–175.

10. Orris G.J., Grauch R.I. Rare earth element mines, deposits, and occurrences. *USGS, Open-File Report 02-189*. 2002, 174 p.

11. Pollard P.J. Evidence of a magmatic fluid source for iron oxide-Cu-Au mineralization. *In Porter, T. M., ed, Hydrothermal iron oxide copper-gold and related deposits: A global perspective.* Adelaide, PGC Publishing, 2000, vol. 1, pp. 27–41.

12. Schofield A. Uranium content of igneous rocks of Australia 1:5 000 000 maps – Explanatory notes and discussion. *Geoscience Australia*, Record. 2009/17. 20 p.

© А. В. Костин, 2014

КОСТИН Алексей Валентинович

Институт геологии алмаза и благородных металлов СО РАН (ИГАМБ СО РАН), Якутск, зав. лабораторией, д.г.-м. н. *E-mail: kostin@diamond.ysn.ru*

- KOSTIN Aleksei, DSc, Diamond and Precious Metal Geology Institute, Siberian Branch of the Russian Academy of Sciences (DPMGI SB RAS), Yakutsk, Russia
 - E-mail: kostin@diamond.ysn.ru