# МИНЕРАЛОГО-ГЕОХИМИЧЕСКИЕ ОСОБЕННОСТИ АРЫСКАНСКОГО РУДОПРОЯВЛЕНИЯ ЗОЛОТА КВАРЦЕВО-ЖИЛЬНОГО ТИПА В БЕРЕЗИТАХ (ЗАПАДНАЯ ТУВА)

# Р.В.Кужугет<sup>1</sup>, В.В.Зайков<sup>2,3</sup>, Н.Н.Анкушева<sup>2,3</sup>

<sup>1</sup>Тувинский институт комплексного освоения природных ресурсов СО РАН, Кызыл; <sup>2</sup>Институт минералогии УрО РАН, Миасс; <sup>3</sup> Миасский филиал Южно-Уральского государственного университета, Миасс

Рассмотрены минералого-геохимические особенности и условия образования продуктивных минеральных ассоциаций Арысканского рудопроявления золота, локализованного в березитизированных осадочных и магматических породах. На рудопроявлении отмечаются две продуктивные стадии: золото-сульфидно-кварцевая и золото-теллуридно-сульфидно-кварцевая. Поздняя золото-теллуридно-сульфидно-кварцевая стадия выявлена впервые и представлена золототеллуридной ассоциацией с золотом, петцитом (Ag<sub>3</sub>AuTe<sub>2</sub>), гесситом (Ag<sub>2</sub>Te), алтаитом (PbTe), Se-содержащим алтаитом, теллуровисмутитом (Bi<sub>2</sub>Te<sub>3</sub>) и букхорнитом (AuPb<sub>2</sub>BiTe<sub>2</sub>S<sub>3</sub>). Золото в рудах находится в самородной форме, а также в виде петцита и букхорнита (комплексного халькогенида Au). Установлено, что руды Арысканского рудопроявления формировались при температурах 340–128 °C (ранняя золото-сульфидно-кварцевая стадия – 340–208 °C, поздняя золото-теллуридно-сульфидно-кварцевая стадия – 128–280 °C).

**Ключевые слова**: березиты, золото, теллуриды, минералогия, кварц, услояия образования, флюидные включения, Тува.

# MINERAL AND GEOCHEMICAL FEATURES OF THE ARYSKANSKOYE GOLD-QUARTZ MINERALISATION IN BERESITES (WESTERN TUVA)

## R. V. Kuzhuget<sup>1</sup>, V. V. Zaykov<sup>2,3</sup>, N. N. Ankusheva<sup>2,3</sup>

<sup>1</sup>Tuvinian Institute for Exploration of Natural Resources SB RAS, Kyzyl; <sup>2</sup>Institute of Mineralogy UB RAS, Miass; <sup>3</sup>South Ural State University Miass Branch Miass

The article discusses mineral and geochemical features and conditions of formation of producing mineral associations of the Aryskanskoye gold-quartz mineralisation located in beresitised sedimentary and magmatic rocks. There are two productive stages of the mineralisation: gold-sulphide-quartz and gold-telluride-sulphide-quartz ones. The late gold-telluride-sulphide-quartz stage was identified for the first time. It is represented by the gold-telluride association with gold, petzite (Ag<sub>3</sub>AuTe<sub>2</sub>), hessite (Ag<sub>2</sub>Te), altaite (PbTe), Se-containing altaite, bismuth telluride (Bi<sub>2</sub>Te<sub>3</sub>), and buckhornite (AuPb<sub>2</sub>BiTe<sub>2</sub>S<sub>3</sub>). The gold is native, as well as petzites and buckhornites (complex Au chalcogenide). It was established that the ores of the Aryskanskoye mineralisation were formed at a temperature of  $340-128^{\circ}$ C (the early gold-sulphide-quartz stage at  $340-208^{\circ}$ C, the late gold-telluride-sulphide-quartz stage at  $128-280^{\circ}$ C).

Keywords: beresites, gold, tellurides, mineralogy, quartz, conditions of formation, fluid inclusions, Tuva.

DOI 10.20403/2078-0575-2017-1-98-110

В результате поисковых, геолого-съемочных и научно-исследовательских работ 1952–1988 гг. в Западной Туве было выявлено несколько рудопроявлений золота кварцево-жильного типа (Улуг-Саирское, Хаак-Саирское, Дуушкуннугское, Ак-Дашское, Арысканское и др.). Эти объекты сосредоточены в Алдан-Маадырском рудном узле (АМРУ) на левобережье р. Хемчик (рис. 1). Оруденение контролируется Хемчикско-Куртушибинским глубинным разломом, по которому венд-кембрийские метатерригенные комплексы Западного Саяна сопряжены с венд-нижнекембрийскими офиолитами и осадочно-вулканогенными комплексами палеозоя Тувинского рифтогенного прогиба [7].

Рудные объекты сосредоточены в субширотной полосе размером 45×(5–7) км. Золоторудная минерализация парагенетически связана с малыми интрузиями и дайками гранодиорит-, тоналит-порфиров I фазы и дайками риолитов II фазы баянкольского комплекса (D<sub>2–3</sub>) [11]. Возраст даек габбро III фазы баянкольского комплекса (D<sub>2-3</sub>) в сланцах чингинской свиты на участке Тлангара данного узла, определенный Ar-Ar методом по роговой обманке, составляет 376,5<u>+</u>3,4 млн лет, что соответствует D<sub>3</sub> [8].

Рудные объекты АМРУ характеризуются небольшими параметрами золотого оруденения на поверхности (мелкие по запасам объекты), но благоприятными геолого-минералогическими предпосылками выявления средних объектов (со средними содержаниями Au 2 г/т) на глубине первые сотни метров.

Цель статьи – характеристика минералого-геохимических особенностей и условий образования продуктивных минеральных ассоциаций Арысканского рудопроявления в березитизированных дайках и кварцевых песчаниках.

## Геологическое строение Арысканского рудопроявления

Арысканское рудопроявление, установленное Е. В. Зайковой в 1964 г. в процессе геологической съемки м-ба 1:50 000 [5], расположено в восточной части узла на южных склонах горы Арыскан. Оно приурочено к восточной части Улуг-Саирской горстантиклинальной структуры субширотного простирания, сложенной рассланцованными ордовикскими конгломератами, алевролитами и песчаниками (рис. 1, 2). Структура осложнена секущими ее разрывными нарушениями. Ядро структуры составлено океаническими офиолитами меланж-олистостромовой ассоциации (V– $\varepsilon_1$ ), обнаженными западнее рудопроявления, а крылья – ордовикскими конгломератами, алевролитами и песчаниками

Золотое оруденение ассоциирует с березитами, развитыми по дайкам кислого состава и кварцевым песчаникам с прослоями алевролитов. Золото локализовано в прожилках кварца среди лестничных жил в березитизированных дайках гранодиорит-порфиров, в прожилках кварца в микродиоритах, а также в кварцевых, сульфидно-кварцевых жилах и зонах окварцевания. Содержание сульфидов в рудах не превышает 5 %.

В процессе поисковых работ обнаружено пять зон березитизированных пород субширотного простирания: зоны I–IV развиваются за счет осадочных пород (кварцевых песчаников и алевролитов) верхней подсвиты адырташской свиты (O<sub>3</sub>); зона V – по дайкам гранодиорит-порфиров, которые отнесены к I фазе баянкольского комплекса (D<sub>2-3</sub>) (см. рис. 2). Золоторудная минерализация в измененных породах носит прожилковый, гнездовой и рассеянновкрапленный характер.

Березитизированные песчаники представляют собой желтоватые тонкокристаллические кварцкарбонатные породы с вкрапленностью пирита (до



**Рис. 1.** Схематическая геологическая карта центральной части АМРУ (по данным Е. В. Зайковой, В. В. Зайкова [5] и Б. Д. Васильева и др. [10] с добавлениями)

1 – четвертичные отложения; 2 – эффузивы, риолитовые порфиры верхней подсвиты кендейской свиты; 3 – красноцветные песчаники и алевролиты верхней подсвиты хондергейской свиты; 4 – алевролиты чергакской свиты; 5 – алевролиты, песчаники, конгломераты верхней подсвиты адырташской свиты; 6 – рассланцованные конгломераты, алевролиты, гравелиты и песчаники нижней подсвиты адырташской свиты; 7 – серицит-хлорит-кварцевые сланцы, метаморфизованные алевролиты сютхольской свиты; 8 – офиолитовые аллохтоны, меланж, олистостромы (эффузивы, туфы, серпентиниты, алевролиты, песчаники и сланцы чингинской свиты); 9–11 – интрузивные образования баянкольского комплекса: 9 – дайки микродиоритов III фазы, 10 – кварцевые, андезитовые и риолитовые порфиры II фазы, 11 – гранодиорит-, тоналит-порфиры, гранит-порфиры, риолиты I фазы; 12 – граниты сютхольского комплекса; 13 – серпентиниты, перидотиты, пироксениты и связанные с ними габброиды и диориты офиолитового акдовракского комплекса; 14 – лиственитизированные (а), березитизированные дайки гранодиорит-порфиров II фазы баянкольского комплекса (б) и березитизированные кварцевые песчаники ордовика (в); 15 – границы геологические (а) и фациальных переходов (б); 16 – разрывные нарушения достоверные (а) и предполагаемые (б); 17 – тектонические зоны; 18 – рудопроявления (а); мелкие рудопроявления и точки минерализации Au (б); 19 – рудопроявления золота (Хс – Хаак-Саирское, Ус – Улуг-Саирское, Ар – Арысканское, Ад – Ак-Дагское, Дш – Дуушкуннугское, Тх – Тожектыгхемское)



**Рис. 2.** Геологическая схема Арысканского рудопроявления (по данным В. В. Зайкова и др. [5] и Б. Д. Васильева и др. [10] с добавлениями)

1 – четвертичные отложения; 2 – алевролиты чергакской свиты; 3 – алевролиты, песчаники и конгломераты верхней подсвиты адырташской свиты; 4 – березитизированная дайка гранодиорит-порфиров I фазы баянкольского комплекса; 5 – березитизированные кварцевые песчаники и алевролиты ордовика; 6 – дайки диорит-порфиров III фазы баянкольского комплекса; 7 – кварцевые жилы и жильные зоны; 8 – границы геологические; 9 – разрывные нарушения: достоверные (а) и предполагаемые (б); 10 – номера проб и образцов и места их отбора; 11 – номера березитизированных зон; 12 – точки с видимым золотом; 13 – скважина

1 %) и чешуйками серицита (до 15 %), пронизанные тонкими прожилками кварца с пиритом. Выделения анкерита и сидерита (до 15 %) по размерам соизмеримы с зерном исходной породы, а гранулы новообразованного кварца очень мелкие – 0,005–0,02 мм. В гипергенных условиях железистые карбонаты частично разложены с выделением гидроокислов железа. В измененных породах отмечаются также более поздние кварц-анкеритовые прожилки мощностью 3,0–3,5 мм.

В I–IV зонах среди березитов встречаются реликты первичных неизмененных пород. Переходы от них к березитизированным породам постепенные. Березитизации подверглись отдельные слои вмещающих пород, которые наблюдаются ближе к вершинам «хребтиков». Их протяженность до 3,5 км; они не выдержаны по мощности (от 0,5 до 5 м); в отдельных телах она колеблется в среднем от 0,1–1,5 до 2 м. Залегание березитизированных пород крутое (с углами падения 75–85°), иногда вертикальное. Возможно, в I–IV зонах березитизированные дайки гранодиорит-порфиров находятся гипсометрически ниже березитизированных песчаников.

Мощность указанных даек составляет 0,2–1 м, протяженность до 2,5 км. Падение даек вертикальное, контакты их с вмещающими породами секущие. Простирание даек субширотное и согласуется с направлениями разломов. Реликтовая структура исходной породы порфировая с микрогипидиоморфнозернистой основной массой, новообразованная (лепидобластовая). Порфировые выделения размером 1–2 мм состоят из кристаллов альбитизированного плагиоклаза с редкими чешуйками серицита или сростков нескольких кристаллов. Количество порфировых выделений 2–3 %. В основной массе отмечаются выделения серицита до 15 %, анкерита 2 %, пирита 1 % и менее (кристаллы размером 0,2–0,5 мм).

Тела березитов и березитизированных пород секутся маломощными (2–7 см) жилами и прожилками штокверкового типа продуктивных стадий, в 3 км западнее зоны березитизации переходят в золотоносную жильно-прожилковую зону Улуг-Саирского рудопроявления.

Предварительная оценка Арысканского рудопроявления проведена в 1963–1965 гг. Нижнеалашской геолого-съемочной партией [4]. Содержание Au (более 2–31 г/т) было обнаружено в пяти пробах из V зоны. В 1967–1968 гг. Западной партией [2] повышенная концентрация Au установлена в I и V зонах (несколько проб с 2–3,1 г/т Au). Чтобы выяснить поведение золота на глубине, в I зоне пробурена одиночная скважина (111 м), которая выявила березитизированные породы в интервале 22–111 м. Мощность этих пород колеблется от 0,1 до 1,8 м, а расстояние между ними – от 1 до 30 м. Из 16 керновых проб Au определено только в одной (0,7 г/т), Ag – в восьми (от 15 до 107,8 г/т).

В 2009–2010 гг. на площади АМРУ поисковой партией ОАО «Красноярскгеолсъемка» проводились поисковые работы на рудное золото [6]. На Арысканском рудопроявлении по результатам литогеохимического опробования получены аномалии Аи, отражающие общую линейную морфологию золотоносной структуры, имеющей сложное ветвящееся строение. Во вторичных ореолах рассеяния золотоносная зона оконтуривается по изолинии 20 мг/т цепочечно-узловыми ореолами Au (с содержаниями до 30-80 мг/т в центральных частях) линейно вытянутыми в субширотном направлении примерно на 2500 м при ширине 50-400 м. По полученным вторичным ореолам Аи пройдены две линии шурфов и канав, вскрывших жильно-прожилковую зону мощностью 4 м с содержанием Au 3,4 г/т. По результатам этих работ для Улуг-Саирского рудного поля (Улуг-Саирское и Арысканское рудопроявления) оценены прогнозные ресурсы Аи по категории Р<sub>2</sub> при среднем содержании 2 г/т до глубины 200 м -20 т [6].

#### Стадии и минеральные ассоциации руд

На основе собственных наблюдений и с учетом материалов предшественников [10, 11] на рудопроявлении установлены следующие стадии (ассоциации):

– **допродуктивные** – березитовая (кварц, серицит, сидерит, анкерит, альбит, пирит), пирит-кварцевая (кварц, пирит, гематит, шеелит);

продуктивные – золото-сульфидно-кварцевая (кварц, халькопирит, пирит, галенит и золото), золото-теллуридно-сульфидно-кварцевая (кварц, борнит, халькопирит, пирит, золото, петцит, гессит, теллуровисмутит, алтаит, Se-содержащий алтаит, Zn-теннантит-тетраэдрит и букхорнит);

– постпродуктивные – карбонатно-кварцевая (кварц, кальцит, Fe-доломит, анкерит, турмалин) и хлорит-гематит-кварцевая (кварц, хлорит и гематит) (рис. 3).

После образования предрудных среднетемпературных метасоматитов (березитов, березитизированных пород) и сопряженных с ними безрудных кварц-пиритовых жил происходило внедрение даек микродиоритов, диорит-порфиров, которые отнесены к III фазе баянкольского комплекса (D<sub>2-3</sub>). Последние пересечены кварцево-жильными образованиями продуктивных стадий. Безрудная кварцпиритовая стадия с шеелитом выражена гораздо ярче и представлена жилами (длиной до 4,5 м, мощностью 0,7 м) и прожилками (мощностью до 15 см), которые секут осадочные породы, березиты и березитизированные породы. Пирит сохранился в виде реликтовых зерен ксеноморфной формы в лимоните. Нередки мономинеральные пиритовые просечки. Кварц прожилков серый, сероватобелый.

Золото-сульфидно-кварцевая стадия накладывается на пирит-кварцевые прожилки в зонах метасоматитов и сланцев. Кварц белый, молочнобелый с переходами от серовато-белого до розовато-белого (за счет окисления гидроксидов Fe), имеет плотный мелкозернистый сливной облик. Образование кварца данной стадии сопровождается интенсивной гидротермальной проработкой вмещающих пород, продуктами которой являются хлорит и серицит. В свою очередь, минеральные ассоциации золото-сульфидно-кварцевой стадии отчетливо рассекаются поздними молочно-белыми кварцевыми прожилками золото-теллуридно-сульфидно-кварцевой стадии. Кварц поздней продуктивной стадии крупнозернистый, молочно-белый, непрозрачный.

Простирание кварцевых жил и жильных зон восточно-северо-восточное, залегание близкое к вертикальному, мощность жил от десятков см до 1 м, длина от 15 до 50 м. Жильные зоны представляют собой системы шириной до 5 м и протяженностью 10–75 м. Наличие в рудах халькопирита, галенита, борнита и пирита – положительный признак их золотоносности.

#### Минералогия продуктивных стадий

Состав минералов руд определялся на растровых электронных микроскопах (с пределами обнаружения содержаний элементов-примесей 0,01–0,3 мас. %): РЭММА-202М (Институт минералогии УрО РАН, Миасс) и MIRA LM (Институт геологии и минералогии СО РАН, Новосибирск), а также на рентгеноспектральном микроанализаторе JXA 8100, САМЕВАХ-Місго с пределами обнаружения содержаний элементов-примесей – 0,001 мас. % (Институт геологии и минералогии СО РАН).

Ранняя золото-сульфидно-кварцевая стадия проявлена наиболее широко. Кварцевые жилы и прожилки – основные концентраторы Au. Среди алевролитов и микродиоритов они существенно халькопиритовые, в березитизированных гранодиорит-порфирах, кварцевых песчаниках и алевролитах – пиритовые. В существенно халькопиритовых жилах минералы представлены халькопиритом, пиритом, реже - галенитом и золотом. Халькопирит и пирит частично или полностью замещены гипергенными минералами (лимонитом, гетитом), т. е. продуктами их окисления. Довольно часто отмечаются выделения лимонита по пириту с реликтами последнего. Галенит при окислении в процессе выветривания образует церуссит и PbO (минерал глёт). Золото присутствует в виде мелких выделений в кварце в ассоциации с галенитом и халькопиритом (рис. 4). Морфология зерен золота весьма разнообразна, преобладают трещинно-прожилковые, комковидно-ветвистые и ксеноморфные разности.

Существенно пиритовые жилы в березитизированных гранодиорит-порфирах, кварцевых песчаниках и алевролитах развиты не так широко, они проявлены в виде пирит-кварцевых прожилков и жил северо-восточного простирания мощностью до 1 м и длиной до 40 м. Основной рудный минерал – пирит, редко отмечается халькопирит. Халькопирит и пирит встречаются в виде реликтовых зерен не-



| Минеральные ассоциации | 1        | 2      | 3       | 4     | 5        | 6        |        |
|------------------------|----------|--------|---------|-------|----------|----------|--------|
| Стадии                 | Допродук | тивные | Продукт | ивные | Постпрод | уктивные | Гипер- |
| Минералы               | 1        | 2      | 1       | 2     | 1        | 2        |        |
| Кварц                  |          |        |         |       |          |          |        |
| Серицит                |          |        | —       |       |          |          |        |
| Альбит                 | —        |        |         |       |          |          |        |
| Сидерит                |          |        |         |       |          |          |        |
| Анкерит                |          |        |         |       |          |          |        |
| Пирит                  |          |        |         |       |          |          |        |
| Шеелит                 |          | —      |         |       |          |          |        |
| Гематит                |          | —      |         |       |          |          |        |
| Халькопирит            |          |        |         |       |          |          |        |
| Галенит                |          |        | —       |       |          |          |        |
| Золото                 |          |        | —       |       |          |          |        |
| Борнит                 |          |        |         |       |          |          |        |
| Гессит                 |          |        |         | —     |          |          |        |
| Петцит                 |          |        |         | —     |          |          |        |
| Алтаит                 |          |        |         | —     |          |          |        |
| Se-содержащий алтаит   |          |        |         |       |          |          |        |
| Теллуровисмутит        |          |        |         |       |          |          |        |
| Блёклые руды           |          |        |         | _     |          |          |        |
| Букхорнит              |          |        |         |       |          |          |        |
| Кальцит                |          |        |         |       |          |          |        |
| Fe-доломит             |          |        |         |       | —        |          |        |
| Хлорит                 |          |        | —       |       |          |          |        |
| Малахит                |          |        |         |       |          |          | —      |
| Азурит                 |          |        |         |       |          |          | —      |
| Халькозин              |          |        |         |       |          |          | —      |
| Ковеллин               |          |        |         |       |          |          | —      |
| Церуссит               |          |        |         |       |          |          | _      |
| Глёт                   |          |        |         |       |          |          | —      |
| Лимонит                |          |        |         |       |          |          |        |
| Гётит                  |          |        |         |       |          |          | _      |
| Чеховичит              |          |        |         |       |          |          | —      |
| Ютенбогардеит          |          |        |         |       |          |          | _      |
| Акантит                |          |        |         |       |          |          |        |
| Гипергенное серебро    |          |        |         |       |          |          |        |
|                        |          |        |         | -     |          |          |        |

Рис. З. Парагенетическая схема Арысканского рудопроявления (толщина линий указывает на относительную степень распространенности минерала)

Допродуктивные стадии – березитовая (1) и пирит-кварцевая (3); продуктивные стадии – золото-сульфидно-кварцевая (1), золото-теллуридно-сульфидно-кварцевая (2); постпродуктивные стадии – карбонатно-кварцевая (1) и хлоритгематит-кварцевая (2)

правильной формы, размерами 0,03–5,5 мм внутри выделений гидроксидов Fe зонально-ритмического строения. Золото в этих жилах приурочено к кварцу, пириту, халькопириту и гетиту, образованному по пириту и халькопириту по сульфидам при их окислении в коре выветривании. Оно представлено крупными ксеноморфными агрегатами и мелкими (первые десятки мкм) гипидиоморфными зернами и их сростками или тонкими пластинками, чешуйками (толщиной несколько микрометров) (см. рис. 5). Некоторые крупные пластинки и чешуйки золота состоят из отдельных зерен, скрепленных в полигональные агрегаты (см. рис. 5, в, г), что хорошо проявляется при травлении золота царской водкой (см. рис. 5, г).

Составы самородного золота существенно халькопиритовых и пиритовых жил золото-сульфидно-кварцевой стадии не различаются. В золото-суль-

#### Р. В. Кужугет, В. В. Зайков и др.



Рис. 4. Формы выделения золота (Au) золото-сульфидно-кварцевой стадии в кварце (Qz) в ассоциации с глётом (Lth), малахитом (Mlc) и гетитом (Gth)

а-в – обр. Т-199, прожилок кварца в микродиорите (V зона), г – обр. АРР-1-11, прожилок кварца в березитизированной дайке гранодиорит-порфира (V зона). Здесь и на рис. 6 фотографии в отраженных электронах сделаны на сканирующем электронном микроскопе MIRA LM (Институт геологии и минералогии СО РАН, Новосибирск, аналитик Н. С. Карманов)

фидно-кварцевой стадии содержание Au от центра зерен к периферии зерен закономерно уменьшается на 1–2 мас. %, при этом содержание Ag увеличивается. Отмечаются содержания (мас. %) Ag до 19, Cu 0,40, Hg 0,24, Te 0,05 (табл. 1).

По химическому составу Au золото-сульфидно-кварцевой стадии можно разделить на две группы:

1) высокопробное с содержанием Ag до 10 мас. % (Au 89,25–93,75, Ag 6,33–9,49, Cu 0,01– 0,40, Hg 0,00–0,02, Te 0,00–0,04 мас. %);

2) среднепробное с содержанием Ag до 16 мас. % (Au 80,72-89,51, Ag 9,96-18,89, Cu 0,00-0,31, Hg 0,00-0,24, Te 0,00-0,05 мас. %).

Золото-теллуридно-сульфидно-кварцевая стадия – это единичные жилы и прожилки, наложенные на кварц-сульфидные жилы в березитизированных песчаниках и алевролитах. Золото отлагалось вместе с борнитом, петцитом, гесситом, алтаитом, Se-содержащим алтаитом, теллуровисмутитом, букхорнитом, Zn-теннантит-тетраэдритом, пиритом. Оно приурочено к кварцу, гетиту, чеховичиту и представлено многочисленными зернами различной морфологии размером до 100 мкм (рис. 6). В самородном золоте золото-теллуридно-сульфидно-кварцевой стадии содержание Au от центра зерен к их периферии закономерно уменьшается на 1–2 мас. %, при этом содержание Ag увеличивается. Отмечаются содержания Ag до 13,36, Cu до 0,25 мас. % (табл. 2).

По химическому составу золото данной стадии можно разделить на две группы:

1) высокопробное с содержанием Ag до 10 мас. % (Au 89,29–91,56, Ag 7,47–9,85, Cu 0,00– 0,25 мас. %);

2) среднепробное с содержанием Ag до 14 мас. % (Au 86,01–91,56, Ag 10,03–13,77, Cu 0,00– 0,09 мас. %).

Петцит и гессит представлены мелкими (5–20 мкм) включениями в кварце. Морфология выделений петцита и гессита разнообразна, но преобладают овальные формы, часто представленные их срастаниями (см. рис. 6, в, г). В гессите содержится (мас. %): Ag 63,21, Те 36,67, формула (из расчета на три атома) Ag<sub>2,01</sub>Te<sub>0,99</sub>, в петците – Ag 40,99–41,86; Au 25,53–25,62; Te 32,31–32,89, формула (вариации состава) из расчета на шесть атомов – Ag<sub>2,98–3,02</sub>Au<sub>1,01–1,02</sub>Te<sub>1,97–2,01</sub>.

Таблица 1

| Образец      | Au    | Ag    | Cu   | Те   | Hg   | Сумма  | Пробность, % |
|--------------|-------|-------|------|------|------|--------|--------------|
| APP-2a       | 93,75 | 6,50  | 0,01 | 0,03 | -    | 100,29 | 935          |
|              | 92,75 | 6,55  | 0,01 | -    | -    | 99,31  | 934          |
| APP-1a       | 93,29 | 6,33  | 0,27 | -    | -    | 99,89  | 934          |
|              | 92,71 | 6,36  | 0,27 | _    | -    | 99,34  | 933          |
| APP-2a       | 92,74 | 6,67  | 0,03 | 0,01 | -    | 99,45  | 933          |
| APP-1a       | 92,71 | 6,36  | 0,27 | -    | -    | 99,34  | 933          |
|              | 93,01 | 6,47  | 0,28 | 0,02 | 0,02 | 99,89  | 932          |
| APP-2a       | 91,55 | 6,67  | 0,02 | -    | -    | 98,24  | 932          |
|              | 93,16 | 6,86  | 0,03 | -    | -    | 100,05 | 931          |
|              | 92,66 | 6,90  | 0,04 | -    | -    | 99,60  | 930          |
| AD 57 44     | 92,18 | 6,86  | 0,05 | 0,01 |      | 99,10  | 930          |
| AP-57-11     | 92,87 | 6,91  | 0,25 | -    | -    | 100,03 | 928          |
| Ap-1-11      | 92,44 | 7,12  | 0,40 | -    | -    | 99,96  | 925          |
| AP-57-11     | 92,31 | 7,44  | 0,17 | -    | -    | 99,92  | 924          |
|              | 92,07 | 7,38  | 0,23 | -    | -    | 99,68  | 924          |
|              | 92,19 | 7,52  | 0,25 | -    | _    | 99,96  | 922          |
| Ap-1-11      | 91,68 | 7,80  | 0,17 | _    | -    | 99,65  | 920          |
| AP-57-11     | 91,87 | 7,92  | 0,19 | -    | -    | 99,98  | 919          |
| APP-62       | 91,91 | 8,10  | 0,10 | 0,02 | -    | 100,13 | 918          |
| APP-57-11    | 91,18 | 8,45  | 0,21 | -    | -    | 99,84  | 913          |
|              | 91,18 | 8,46  | 0,31 | -    | -    | 99,95  | 912          |
|              | 91,05 | 8,46  | 0,31 | _    | -    | 99,82  | 912          |
| APP-1a       | 91,04 | 8,72  | 0,25 | -    | -    | 100,01 | 910          |
| APP-57-11    | 90,66 | 8,92  | 0,19 | -    | -    | 99,77  | 909          |
|              | 90,70 | 8,81  | 0,39 | _    | -    | 99,90  | 908          |
| APP-62       | 90,15 | 9,27  | 0,08 | 0,03 | -    | 99,53  | 906          |
|              | 90,10 | 9,33  | 0,11 | 0,01 | -    | 99,55  | 906          |
| APP-1a       | 90,22 | 9,28  | 0,18 | _    | -    | 99,68  | 905          |
| APP-62       | 89,25 | 9,26  | 0,12 | 0,04 | -    | 98,67  | 905          |
|              | 90,10 | 9,33  | 0,11 | -    | -    | 99,54  | 905          |
|              | 90,14 | 9,47  | 0,08 | 0,02 | -    | 99,71  | 904          |
|              | 89,55 | 9,33  | 0,12 | 0,02 | -    | 99,02  | 904          |
|              | 89,95 | 9,49  | 0,13 | 0,04 | -    | 99,61  | 903          |
|              | 89,56 | 9,47  | 0,13 | 0,03 | -    | 99,19  | 903          |
|              | 89,31 | 9,96  | 0,09 | 0,01 | -    | 99,37  | 899          |
| 100 57 44    | 88,76 | 10,13 | 0,10 | 0,01 | _    | 99,00  | 897          |
| APP-57-11    | 89,51 | 10,06 | 0,31 | -    | -    | 99,88  | 896          |
| APP-62       | 88,56 | 10,45 | 0,11 | -    | -    | 99,12  | 893          |
|              | 88,51 | 11,61 | 0,05 | 0,01 | 0,09 | 100,27 | 883          |
|              | 87,22 | 11,/8 | 0,07 | 0,02 | -    | 99,09  | 880          |
|              | 87,86 | 11,88 | 0,06 | 0,02 | 0,09 | 99,91  | 8/9          |
|              | 87,81 | 11,92 | 0,06 | 0,02 | 0,04 | 99,85  | 8/9          |
|              | 87,42 | 11,94 | 0,08 | 0,02 | 0,04 | 99,50  | 8/8          |
|              | 86,85 | 11,95 | 0,06 | 0,01 | -    | 98,87  | 878          |
| АРР-1а       | 86,70 | 12,03 | 0,05 | 0,02 | -    | 98,80  | 878          |
|              | 87,15 | 12,84 | -    | -    | -    | 99,99  | 872          |
| <b>T</b> 400 | 87,09 | 12,96 | 0,01 |      | -    | 100,06 | 870          |
| T-199        | 86,33 | 13,05 | -    |      | -    | 99,38  | 869          |
| APP-1a       | 86,06 | 13,10 | 0,02 | -    | -    | 99,18  | 868          |
| APP-62       | 86,43 | 13,12 | 0,05 | _    | 0,24 | 99,84  | 866          |
|              | 86,13 | 13,17 | 0,05 | 0,02 | 0,20 | 99,57  | 865          |
|              | 86,19 | 13,24 | 0,08 | 0,04 | 0,24 | 99,79  | 864          |
|              | 85,75 | 13,20 | 0,05 | 0,01 | 0,24 | 99,25  | 864          |
|              | 85,59 | 13,42 | 0,07 | 0,03 | 0,12 | 99,23  | 863          |
|              | 85,20 | 13,57 | 0,04 | 0,02 | 0,17 | 99,00  | 861          |
| APP-1a       | 86,60 | 14,01 | 0,09 | -    | -    | 100,70 | 860          |
|              | 85,78 | 14,20 | -    | -    | -    | 99,98  | 858          |
|              | 85,75 | 14,13 | 0,07 | -    | -    | 99,92  | 858          |
|              | 84,85 | 14,05 | 0,02 | 0,01 | -    | 98,93  | 858          |
|              | 86,00 | 14,71 | 0,02 | 0,05 | -    | 100,78 | 853          |
| 1-199        | 84,50 | 15,42 | -    | -    | -    | 99,33  | 851          |

№ 1(29) ♦ 2017 —

#### Окончание табл. 1

| Образец | Au    | Ag    | Cu   | Те   | Hg   | Сумма  | Пробность, ‰ |
|---------|-------|-------|------|------|------|--------|--------------|
| APP-62  | 82,95 | 16,03 | 0,05 | -    | 0,17 | 99,20  | 836          |
|         | 83,14 | 16,82 | _    | _    | -    | 99,96  | 832          |
| APP-1a  | 82,17 | 17,91 | 0,01 | 0,01 | 0,01 | 100,11 | 821          |
|         | 80,72 | 18,89 | _    | 0,01 | -    | 99,62  | 810          |
|         |       |       |      |      |      |        |              |

Примечания. Обр. АР-62 и АРР-2а – кварцевые жилы в алевролитах (II зона); обр. АРР-57-11 – кварцевая жила в березитизированных песчаниках (II зона); обр. АРР-1а, АРР-1-11 – кварцевые прожилки в березитизированной дайке гранодиорит-порфира (V зона); обр. Т-199 – прожилок кварца в микродиорите (V зона). Состав золота в образцах АР-62, АРР-2а АРР-1а и АРР-1-11 определялся на рентгеноспектральном микроанализаторе JXA 8100, САМЕВАХ-Місго (аналитик Е. Г. Дашкевич), Т-199, АРР-57 и АРР-57-11 – на электронном микроскопе РЭММА-202М с ЭДА (аналитик В. А. Котляров).

Таблица 2 Химический состав золота кварцевых прожилков золото-теллуридно-сульфидно-кварцевой стадии в обр. APP-57, мас. %

| Au    | Ag    | Cu   | Сумма | Пробность, ‰ |
|-------|-------|------|-------|--------------|
| 91,56 | 7,47  | 0,15 | 99,03 | 925          |
| 90,62 | 8,68  | -    | 99,30 | 913          |
| 90,73 | 8,80  | -    | 99,53 | 912          |
| 90,21 | 9,09  | 0,25 | 99,30 | 908          |
| 90,57 | 9,25  | 0,13 | 99,82 | 907          |
| 90,40 | 9,24  | 0,01 | 99,64 | 907          |
| 90,29 | 9,36  | 0,02 | 99,65 | 906          |
| 89,33 | 9,85  | 0,01 | 99,18 | 901          |
| 89,24 | 9,77  | 0,04 | 99,01 | 901          |
| 89,35 | 10,03 | 0,01 | 99,38 | 899          |
| 87,62 | 11,50 | 0,09 | 99,12 | 884          |
| 86,19 | 13,27 | 0,01 | 99,47 | 867          |
| 86,01 | 13,36 | _    | 99,37 | 866          |

Примечание. Обр. АР-57 – кварцевый прожилок в кварцевой жиле среди березитизированных песчаников и алевролитов (II зона). Состав золота определялся на электронном микроскопе MIRA LM с EDX (аналитик С. Н. Карманов).

В золоте отмечаются небольшие округлые выделения (до 5 мкм) Se-содержащего алтаита, для которого характерен следующий состав (мас. %): Pb 62,28; Те 36,30; Se 1,11; Au 0,07, формула (из расчета на два атома) – Pb<sub>1,00</sub>(Te<sub>0,95</sub>Se<sub>0,05</sub>)<sub>1,0</sub>. Выделения теллуровисмутита (мас. %) отмечаются в кварце (до 200 мкм) и золоте (до 12 мкм): Те 47,53; Ві 2,07, формула (из расчета на пять атомов) – Те<sub>3.00</sub>Ві<sub>2.00</sub>. Мелкие (5-10 мкм) включения букхорнита наблюдаются в кварце и золоте в ассоциации с теллуридами Au-Аg, Ag и Pb (см. рис. 6, д, е). В букхорните определяются (мас. %): Au 15,72–17,85; Pb 38,01–38,90; Bi 14,23–15,04; Те 21,29–22,13; S 7,76–8,25, формула (вариация состава) из расчета на девять атомов -Аи<sub>0.94-1.06</sub>Pb<sub>2.16-2.21</sub>Bi<sub>0.80-0.85</sub>Te<sub>1.96-2.04</sub>S<sub>2.90-3.02</sub>. По данным [12], букхорнит является типоморфным минералом вулканогенных гидротермальных месторождений Au и Au-Ag от колчеданных до убогосульфидных.

В коре выветривания развиты малахит, азурит, лимонит, халькозин, ковеллин, церуссит ( $Pb[CO_3]$ ), гипергенное серебро (Ag), акантит (Ag<sub>2</sub>S), ютенбогардеит (Ag<sub>3</sub>AuS<sub>2</sub>), чеховичит (Bi<sub>2</sub>Te<sub>4</sub>O<sub>11</sub>) и другие

гипергенные минералы, которые развиты по первичным минералам. Мощность зоны гипергенеза не менее 30 м. Чеховичит развивается за счет окисления теллуровисмутита. Выделения ютенбогардеита (до 30 мкм), акантита (до 15 мкм) и гипергенного серебра (до 35 мкм) отмечаются среди гидроокислов Fe (гетита и гидрогетита) в виде мельчайших зерен сложной формы. Состав (мас. %) ютенбогардеита: Au 33,25–33,46; Ag 54,06–55,18; S 11,31– 11,34, формула (из расчета на шесть атомов) – Ag<sub>2,95–2,97</sub>Au<sub>0,98–0,99</sub>S<sub>2,05–2,06</sub>; акантита: Ag 86,96; S 12,94, формула (из расчета на три атома) – Ag<sub>2,00</sub>S<sub>1,00</sub>. Для гипергенного серебра элементы-примеси не характерны.

# Условия образования кварца и золота продуктивных стадий

Микротермометрические исследования флюидных включений в кварце проводились в микротермокамере THMS-600 (Linkam), позволяющей производить измерения температур фазовых переходов в интервале от -196 до +600 °C, с микроскопом Olympus BX51 (Южно-Уральский государственный университет, Миасс, аналитик Н. Н. Анкушева). Программное обеспечение LinkSys V-2,39. Погрешность измерительной аппаратуры ±0,1 °С в интервале температур от -20 до +80 °С и ±1 °С за его пределами. Солевой состав растворов во включениях оценивался по температурам эвтектик [3]. Температуры гомогенизации (Т<sub>гом</sub>) фиксировались в момент исчезновения газового пузырька при нагревании препарата в термокамере. Концентрации солей в растворах рассчитывались по температурам плавления последних кристаллических фаз [14]. Обработка результатов измерений выполнена в программе Statistica 6.1. Результаты термобарогеохимических исследований приведены на рис. 7, 8.

В ходе работы были проанализированы флюидные включения в кварце жил ранней золото-сульфидно-кварцевой стадии в алевролитах (обр. APP-62) и в березитизированных песчаниках (обр. APP-60). Кварц в жилах крупнозернистый, молочно-белый, участками прозрачный или полупрозрачный, редко ожелезненный.

Флюидные включения в кварце (обр. APP-62) из жил в алевролитах некрупные (5–10 мкм), плоские, с кристаллографическими очертаниями, раз-



Рис. 5. Формы выделения золота (Au) в гетите (Gth) из жилы золото-сульфидно-кварцевой стадии

Обр. АР-57-11 — кварцевая жила, секущая березитизированные песчаники (II зона). Фотографии в отраженных электронах сделаны на растровом электронном микроскопе РЭММА-202М (Институт минералогии УрО РАН, Миасс, аналитик В. А. Котляров)

меры газовых пузырьков достигают 20-30 % объема включения. Включения расположены обособленно, приурочены к центральным частям зерен кварца. Их гомогенизация происходит в газовую фазу. Определения температур эвтектики единичны, поскольку затруднены из-за малого размера включений. Установлено, что эвтектика растворов включений происходила в диапазоне от -23,1 до –23,9 °С (n = 10), отвечающем NaCl-KCl-H<sub>2</sub>O составу раствора. Температура плавления льда в растворе включений варьирует от -2,5 до -4,7 °C, а соленость в соответствии с ней – от 4 до 7,5 мас. % NaCl-экв. (n = 47). Распределение значений солености имеет вид одномодальной гистограммы с обрывом слева, преобладает интервал 5-6,5 мас. % (см. рис. 7, в). Включения гомогенизировались при температурах от 230 до 290 °C (n = 47). Распределение значений температур гомогенизации также одномодальное, гистограмма асимметричная, пик приходится на 240-255 °С (см. рис. 7, а).

В кварце (обр. АРР-60) из жилы в березитизированных кварцевых песчаниках установлены два типа двухфазных флюидных включений: 1) более крупные (≈10–12 мкм), изометричной или удлиненной формы, иногда с кристаллографическими элементами, располагающиеся равномерно в кварце; 2) мелкие округлые включения (≈5 мкм), образующие скопления по три – четыре включения.

Первый тип более высокотемпературный (Т<sub>гом</sub> = 200–270 °С, n = 61). Распределение значений температур гомогенизации мультимодальное, преобладающий интервал значений 200–270 °С (см. рис. 7, б). При замораживании включений установлено, что температуры эвтектики находятся в интервале –22,8...–23,9 °С (n = 22), отвечающем солевой системе NaCl-KCl-H<sub>2</sub>O. Концентрации солей в пересчете на NaCl составили 4–8 мас. % (n = 52). Для значений солености характерно бимодальное распределение с выраженными пиками 4,5–5 и 5,5–6,5 мас. % (см. рис. 7, г).

Второй тип включений характеризуется более низкими температурами (T<sub>гом</sub> = 158–180 °C, n = 11). Эти включения очень мелкие, поэтому при криометрических исследованиях лишь в единичных случаях удалось зафиксировать температуру эвтектики (-21 °C, что отвечает водно-солевому раствору NaCl-H<sub>2</sub>O). Температуры плавления льда во включениях -1,7...-5,0 °C, что соответствует солености раствора 2,9–7,8 мас. % NaCl-экв. (n = 11).

По данным [13], формирование жил Улуг-Саирского рудопроявления АМРУ происходило при давлении 0,9–1,0 кбар. Если принять, что глубины

№ 1(29) ♦ 2017



Рис. 6. Формы выделения минералов золото-теллуридно-сульфидно-кварцевой стадии

Обр. AP-57 — кварцевый прожилок в кварцевой жиле среди березитизированных песчаников и алевролитов (II зона): а – золото (Au), теллуровисмутит (Bi<sub>2</sub>Te<sub>3</sub>) с кварцем (Qz) и чеховичитом (Chv); б – теллуровисмутит в золоте, в ассоциации с кварцем, чеховичитом и гетитом (Gth); в – срастания петцита (Pz) с алтаитом (Alt), гессита (Hs) с петцитом в кварце; г – выделения петцита и гетита в кварце; д–е – букхорнит (Bkh) в золоте и кварце в ассоциации с гетитом

формирования Арысканского и Улуг-Саирского рудопроявления близки, то поправка к температурам гомогенизации составляет 50 °С. Соответственно, температуры формирования кварцевых жил золото-сульфидно-кварцевой стадии на Арысканском рудопроявлении могли достичь 208–340 °С.

Температурный интервал формирования золототеллуридной минерализации золото-теллуридно-сульфидно-кварцевой стадии, судя по диаграмме стабильности Au-Ag-Te минералов ассоциации петцит – гессит – самородное золото, соответствует 280–128 °C при  $\log f(\text{Te}_2) = 10^{-13}-10^{-10}$  [9].

#### Обсуждение результатов

Отложение золота Арысканского рудопроявления происходило в две стадии. Ранняя стадия представлена золотосульфидной ассоциацией с халькопиритом, пиритом и галенитом. Поздняя







**Рис. 7.** Гистограммы распределения значений температур гомогенизации (а, б) и солености (в, г) включений в кварце из жил Арысканского рудопроявления: а, в – в алевролитах, б, г – в березитизированных песчаниках; N – количество измерений



Рис. 8. Соотношение температур гомогенизации (T<sub>гом</sub>, °C) и концентраций солей (С, мас. %) в растворах флюидных включений в кварце Арысканского рудопроявления

Жилы: 1 – в алевролитах; 2 – в березитизированных песчаниках; поля рудопроявлений АМРУ: ХС – Хаак-Саирское [15]; УС – Улуг-Саирское: УС<sub>1-2</sub> – золотокварцевые жилы в нижней конгломератовой толще: УС<sub>1</sub> – жила № 18 с высокопробным золотом, УС<sub>2</sub> – жила № 4 с серебристым золотом [1]

продуктивная стадия представлена золототеллуридной ассоциацией с гесситом, петцитом, алтаитом, теллуровисмутитом и т. д. Более продуктивна первая (золото-сульфидно-кварцевая) стадия. По составу продуктивных минеральных ассоциаций Арысканское рудопроявление отвечает золото-пирит-халькопиритовому типу с теллуридами (Au-Ag, Ag и Pb), теллуровисмутитом, Se-содержащим алтаитом и букхорнитом, т. е. характеризуется своеобразным минеральным составом руд, которому присущи некоторые черты вулканогенно-гидротермальных, вулканогенно-плутоногенных золотокварцевых месторождений. Золотины продуктивных ассоциаций Арысканского рудопроявления по химическому составу близки и образуют следующий ряд:

1) высокопробное с содержанием Ag до 10 мас. % (Au 89,25–93,75, Ag 6,33–9,85, Cu 0,00– 0,40, Hg 0,00–0,02, Te 0,00–0,04 мас. %);

2) среднепробное с содержанием Ag до 20 мас. % (Au 80,72–91,56, Ag 9,96–19,89, Cu 0,00– 0,31, Hg 0,00–0,24, Te 0,00–0,05 мас. %).

Минералого-геохимическими методами установлено, что средняя пробность золота рудопроявления составляет 894 ‰ при вариациях от 810 до 935 ‰, первой продуктивной стадии – 893 ‰ (от 810 до 935 ‰), второй – 900 ‰ (866–925 ‰). Золотины продуктивных стадий сходны и характеризуются присутствием Аg до 19,89 мас. %, Hg – 0,24 мас. %, Te – 0,05 мас. %, Cu – 0,40 мас. %.

Менее выраженная зональность золотин предполагает более устойчивые физико-химические параметры минералообразования. Термобарогеохимические исследования показали, что минеральные ассоциации золото-сульфидно-кварцевой стадии кристаллизовались из растворов состава NaCl-KCl-H<sub>2</sub>O с соленостью 3–8 мас. % NaCl-экв. Температуры гомогенизации флюидных включений в кварце – 290–153 °C (с учетом поправки на давление 0,9–1,0 кбар, истинные температуры рудообразования составили 340–208 °C). По данным геотермометров, геофугометров и по минеральным парагенезисам определены температура и летучесть золото-теллуридно-сульфидно-кварцевой стадии: T = 128–280 °C;  $\log f(Te_2) = 10^{-13}-10^{-10}$ .

Наличие в рудах Те может свидетельствовать о глубинном источнике рудообразующих растворов.

На это также косвенно указывают термобарогеохимические особенности кварца из золото-кварцсульфидных жил: повышенная соленость растворов (до 8 мас. % NaCl-экв.) и присутствие КCl в составе солей.

### Выводы

Таким образом, на Арысканском рудопроявлении установлены две продуктивные стадии. Ранняя представлена золотосульфидной ассоциацией, поздняя – золототеллуридной ассоциацией. Изучение минералогии руд Арысканского рудопроявления с помощью методов электронной микроскопии позволило выявить новую для рудопроявления золототеллуридную минеральную ассоциацию, а также ранее не описанные здесь минералы: петцит, гессит, алтаит, теллуровисмутит, букхорнит, Znтеннантит-тетраэдрит, гипергенное серебро, акантит, ютенбогардеит, чеховичит и т. д.

Золотины продуктивных стадий рудопроявления по химическому составу близки, в обеих стадиях отмечаются высокопробное и среднепробное золото. Средняя пробность золота рудопроявления составляет 894 ‰ при вариациях от 810 до 935 ‰.

Установлено, что руды Арысканского рудопроявления формировались при температурах 340–128 °C; ранней золото-сульфидно-кварцевой стадии – при температурах 340–208 °C, золото-теллуридно-сульфидно-кварцевой стадии при более низких температурах – 128–280 °C.

Авторы благодарны А. А. Монгушу, Е. К. Дружковой, Б. Д. Васильеву, И. Ю. Мелекесцевой за консультации и помощь в проведении исследований.

Исследования выполнены при финансовой поддержке проекта СО РАН VIII.72.2.6 и проекта, поддержанного Правительством РФ (Постановление № 211 от 16.03.2013 г.), соглашение № 02. А03.21.0011.

### СПИСОК ЛИТЕРАТУРЫ

1. Анкушева Н. Н., Зайков В. В. Физико-химические условия формирования золотокварцевых жил Улуг-Саирского месторождения (Западная Тува) // Металлогения древних и современных океанов – 2009. Модели рудообразования и оценка месторождений. – Миасс: ИМин УрО РАН, 2009. – С. 127–135.

2. Безруков О. А. Результаты поисково-оценочных работ в бассейне рек Ак-Суг, Алаш, Хемчик. – Кызыл, 1969. – 199 с.

3. Борисенко А. С. Изучение солевого состава растворов газово-жидких включений в минералах методом криометрии // Геология и геофизика. – 1997. – № 8. – С. 16–28.

4. **Геологическое** строение и полезные ископаемые междуречья Ак-Суг – Хемчик / В. В. Зайков, С. С. Куликов, Е. В. Онуфриева и др. – Кызыл, 1966. – 345 с.

5. Зайкова Е. В., Зайков В. В. О золотом оруденении в Западной Туве, связанном с девонским магматизмом // Материалы по геологии Тувинской АССР. – Кызыл, 1969. – С. 72–76.

6. Кононенко Н. Б. Предварительные результаты по золотоносной Алдан-Маадырской зоне (Республика Тыва) // Геология и минеральные ресурсы Центральной Сибири: матер. науч.-практ. конф. – Красноярск: Красноярскгеолсъемка, 2011. – С. 162–166.

7. **Кужугет Р.В.** Золототеллуридное оруденение Алдан-Маадырского рудного узла (Западная Тува): минералого-геохимические особенности руд и условия их образования: автореф. дис. ... к. г.-м. н. – Новосибирск, 2014. – 20 с.

8. Монгуш А. А., Кужугет Р. В., Дружкова Е. К. Особенности состава магматических пород и Ar–Ar данные о возрасте базитовых даек Алдан-Маадырской золоторудной зоны (Западная Тува) // Металлогения древних и современных океанов – 2011. Рудоносность осадочно-вулканогенных и гипербазитовых комплексов. – Миасс: ИМин УрО РАН, 2011. – С. 262–268.

9. Парагенезисы теллуридов золота и серебра в золоторудном месторождении Флоренсия (Республика Куба) / Н. С. Бортников, Х. Крамер, А. Д. Генкин и др. // Геология рудных месторождений. — 1988. — № 2. — С. 49—61.

10. Ревизионно-оценочные работы на золото в Алашском и Эйлиг-Хемском районах Западной Тувы / Б. Д. Васильев, В. П. Дружков, А. И. Красиков, Г. Ю. Боярко. – Кызыл, 1977. – 337 с.

11. **Рудные** формации Тувы / отв. ред. В. А. Кузнецов. – Новосибирск: Наука, 1981. – 201 с.

12. Спиридонов Э. М. Обзор минералогии золота в ведущих типах Аи минерализации // Золото Кольского полуострова и сопредельных регионов: тр. Всерос. (с междунар. участием) науч. конф., посвящ. 80-летию Кольского НЦ РАН. – Апатиты: Издво К&М, 2010. – С. 143–171.

13. Физико-химические условия формирования гидротермальных месторождений Западной Тувы / А. С. Борисенко, В. И. Лебедев, А. С. Оболенский и др. // Основные параметры природных процессов эндогенного рудообразования. – Новосибирск: Наука, 1979. – С. 226–235.

14. **Bodnar R. J., Vityk M. O.** Interpretation of microthermometric data for  $H_2O$ -NaCl fluid inclusions// Fluid inclusions in minerals: methods and applications. – Pontignana-Siena, 1994. – P. 17–130.

15. **Formation** conditions of the Khaak-Sair and Sarytash gold deposits in listvenites, Western Tyva: evidences from fluid inclusions / I. Melekestseva, N. Ankusheva, V. Zaykov et al. // Large igneous provinces of Asia: mantle plumes and metallogeny: Abstracts of the International Conference. – Irkutsk, 2011. – P. 162–165.

## REFERENCES

1. Ankusheva N.N., Zaykov V.V. [Physical and chemical conditions of formation of gold-quartz veins at the Ulug-Sairskoe deposit (Western Tuva)]. *Metallo-*

Минерагения, рудные и нерудные месторождения

geniya drevnikh i sovremennykh okeanov-2009. Modeli rudoobrazovaniya i otsenka mestorozhdeniy [Metallogeny of ancient and modern oceans – 2009. Models of ore formation and estimatiom of deposits]. Miass, IMin UrO RAN Publ., 2009, pp. 127–135. (In Russ.).

2. Bezrukov O.A. *Rezul'taty poiskovo-otsenochnykh rabot v basseyne rek Ak-Sug, Alash, Khemchik* [Results of prospecting and estimation of the basins of the Ak-Sug, Alash, and Khemchik rivers]. Kyzyl, 1969. 199 p. (In Russ.).

3. Borisenko A.S. Research into the salt composition of solutions of gas-liquid inclusions in minerals by cryometry. *Geologiya i geofizika – Geology and Geophysics*, 1997, no. 8, pp. 16–28. (In Russ.).

4. Zaykov V.V., Kulikov S.S., Onufrieva E.V., et al. *Geologicheskoe stroenie i poleznye iskopaemye mezhdurech'ya Ak-Sug – Khemchik* [Geological structure and mineral resources of the Ak-Sug – Khemchik interstream area]. Kyzyl, 1966. 345 p. (In Russ.).

5. Zaykova E.V., Zaykov V.V. [Gold mineralisation in Western Tuva, associated with the Devonian magmatism]. *Materialy po geologii Tuvinskoy ASSR* [Collected papers on geology of the Tuva ASSR]. Kyzyl, 1969, pp. 72–76. (In Russ.).

6. Kononenko N.B. [Preliminary results of the research into the gold-bearing Aldan-Maadyrskaya zone (Republic of Tyva)]. *Geologiya i mineral'nye resursy Tsentral'noy Sibiri: materialy nauch.-prakt. konf.* [Geology and mineral resources of Central Siberia: Proceedings of the research to practice conference]. Krasnoyarsk, Krasnoyarskgeolsyomka Publ., 2011, pp. 162– 166. (In Russ.).

7. Kuzhuget R.V. Zoloto-telluridnoe orudenenie Aldan-Maadyrskogo rudnogo uzla (Zapadnaya Tuva): mineralogo-geokhimicheskie osobennosti rud i usloviya ikh obrazovaniya: Avtoref. dis. ... k.g.-m.n. [Gold-telluride mineralisation of the Aldan-Maadyrsky ore cluster (Western Tuva): Mineral and geochemical features of ores and mineralisation conditions: Author's abstract of PhD thesis]. Novosibirsk, 2014. 20 p. (In Russ.).

8. Mongush A.A., Kuzhuget R.V., Druzhkova E.K. [Composition features of magmatic rocks and Ar–Ar data on the age of basic dykes in the Aldan-Maadyrskaya gold-ore zone (Western Tuva)]. *Metallogeniya drevnikh i sovremennykh okeanov–2011. Rudonosnost' osadochno-vulkanogennykh i giperbazitovykh*  *kompleksov* [Metallogeny of ancient and modern oceans – 2011. Ore potential of volcanosedimentary and ultramafic complexes]. Miass, Imin UrO RAN Publ., 2011, pp. 262–268.

9. Bortnikov N.S., Kramer H., Genkin A.D., et al. [Parageneses of gold and silver tellurites in the Florence gold-ore deposit (Republic of Cuba)]. *Geologiya rudnykh mestorozhdeniy* – *Geology of Ore Deposits*, 1988, no. 2, pp. 49–61. (In Russ.).

10. Vasilyev B.D., Druzhkov V.P., Krasikov A.I., Boyarko G.Yu. *Revizionno-otsenochnye raboty na zoloto v Alashskom i Eylig-Khemskom rayonakh Zapadnoy Tuvy* [Revision and appraisal of gold content in the Alashsky and Eylig-Khemsky regions of Western Tuva]. Kyzyl, 1977. 337 p. (In Russ.).

11. *Rudnye formatsii Tuvy* [Ore formations of Tuva]. Ex. ed. Kuznetsov V.A. Novosibirsk, Nauka Publ., 1981. 201 p. (In Russ.).

12. Spiridonov E.M. [Review of gold mineralogy in the leading types of Au mineralisation]. *Zoloto Kol'skogo poluostrova i sopredel'nykh regionov. Trudy Vserossiyskoy (s mezhdunarodnym uchastiem) nauchnoy konferentsii, posvyashchennoy 80-letiyu Kol'skogo NTs RAN. Apatity, 26–29 sent. 2010 g.* [Gold of the Kola Peninsula and the adjacent regions. Proceedings of the Russian Scientific Conference with international participation, dedicated to the 80<sup>th</sup> anniversary of the Kolsky NTs RAN. Apatity, 26–29 September 2010]. Apatity, K & M Publishing, 2010, pp. 143–171. (In Russ.).

13. Borisenko A.S., Lebedev V.I., Obolenskiy A.S., et al. [Physical-chemical conditions of formation of hydrothermal deposits in Western Tuva]. *Osnovnye parametry prirodnykh protsessov endogennogo rudoo-brazovaniya* [Basic parameters of natural processes of endogenous mineralisation]. Novosibirsk, Nauka Publ., 1979, pp. 226–235. (In Russ.).

14. Bodnar R. J., Vityk M. O. Interpretation of microthermometric data for  $H_2O$ -NaCl fluid inclusions. *Fluid inclusions in minerals: methods and applications*. Pontignana-Siena, 1994, pp. 17–130.

15. Melekestseva I., Ankusheva N., Zaykov V., et al. Formation conditions of the Khaak-Sair and Sarytash gold deposits in listvenites, Western Tyva: evidences from fluid inclusions. *Large igneous provinces of Asia: mantle plumes and metallogeny: Abstracts of the International Conference*. Irkutsk, 2011, pp. 162–165.

> © Р. В. Кужугет, В. В. Зайков, Н. Н. Анкушева, 2017