УДК (551.21:551.834):550.93(571.1)

ВОЗРАСТ И ПАЛЕОТЕКТОНИЧЕСКАЯ ОБСТАНОВКА ДЕВОНСКОГО ВУЛКАНИЗМА КОЛЫВАНЬ-ТОМСКОЙ СКЛАДЧАТОЙ ЗОНЫ ПО ДАННЫМ ДАТИРОВАНИЯ ДЕТРИТОВЫХ ЦИРКОНОВ МИТРОФАНОВСКОЙ СВИТЫ

Ф. И. Жимулев¹, Дж. Гиплеспи², С. Глорие², А. В. Котляров¹, Е. В. Ветров^{1,3}, Й. Де Граве⁴ ¹Институт геологии и минералогии им. В. С. Соболева СО РАН, Новосибирск, Россия; ²Университет Аделаиды, Австралия; ³Сибирский НИИ геологии, геофизики и минерального сырья, Новосибирск, Россия; ⁴Университет Гента, Бельгия

Среднедевонские вулканические образования буготакского комплекса слагают нижнюю тектоническую пластину Колывань-Томской складчатой зоны и обнажаются в пределах наиболее поднятых блоков зоны (Ордынского, Буготакского и Митрофановского). В результате уран-свинцового датирования детритового циркона из вулканокластических пород в кровле митрофановской свиты установлено, что вулканогенные породы Митрофановского поднятия формировались в диапазоне 380–395 млн лет. Среднедевонская вспышка вулканизма произошла после длительного перерыва в магматической активности и осадконакоплении региона. Неодимовый изотопный состав изученных пород (ɛNd(T) = 6,9 для возраста 380 млн лет) свидетельствует, что источником среднедевонского вулканизма изучаемой зоны служила деплетированная мантия. Вулканический пояс, фрагменты которого представляют собой образования буготакского комплекса, был заложен на Салаирском континентальном блоке, образованном раннепалеозойской ювенильной корой, сформированной в надсубдукционных условиях. Среднедевонский вулканизм сопровождался расколом континентальной коры и раскрытием морского бассейна, карбонатно-терригенные отложения которого слагают верхнедевонско-раннекарбоновую осадочную последовательность Колывань-Томской складчатой зоны. В фундаменте Кузнецкого прогиба отсутствуют блоки докембрийской континентальной коры.

Ключевые слова: геохронология, циркон, вулканизм, Западная Сибирь, девон.

AGE AND PALEOTECTONIC SETTING OF THE DEVONIAN VOLCANISM OF THE KOLYVAN-TOMSK FOLDED ZONE, INSIGHTS FROM DETRITAL ZIRCON GEOCHRONOLOGY OF THE MITROFANOVSKAYA FORMATION

F. I. Zhimulev¹, J. Gillespie², S. Glorie², A. V. Kotlyarov¹, E. V. Vetrov^{1,3}, J. De Grave⁴

¹V.S.Sobolev Institute of Geology and Mineralogy SB RAS, Novosibirsk, Russia; ²Tectonics, Resources and Exploration (TraX), Department of Earth Sciences, University of Adelaide, Adelaide, Australia; ³Siberian Research Institute of Geology, Geophysics and Mineral Resources, Novosibirsk, Russia; ⁴Laboratory for Mineralogy and Petrology, Department of Geology, Ghent University, Ghent, Belgium

The Middle Devonian volcanic formations of the Bugotak complex compose the lower tectonic nappe of the Kolyvan-Tomsk folded zone and are exposed within the most elevated blocks of the zone, namely Ordynsk, Bugotak and Mitrofanovo ones. As a result of uranium-lead dating of detrital zircon from volcanicclastic rocks in the top of the Mitrofanovskaya Formation, it was established that the volcanogenic rocks of the Mitrofanovo uplift of the Kolyvan-Tomsk folded zone were formed in the range of 395–380 Ma. The Middle Devonian outbreak of volcanism occurred after a long interruption in the magmatic activity and sedimentation of the region. The neodymium isotope composition of the studied rocks (ϵ Nd (T) = 6.9 for the age of 380 Ma) indicates that a depleted mantle was a source of the Middle Devonian volcanism of this zone. The volcanic belt, fragments of which are formations of the Bugotak complex, was established on the Salair continental block formed by the Early Paleozoic juvenile crust developed under suprasubduction conditions. The Middle Devonian volcanism was accompanied by a split of the continental crust and the opening of the sea basin, the carbonate-terrigenous deposits of which compose the Upper Devonian-Early Carboniferous sedimentary sequence of the Kolyvan-Tomsk folded zone. In the basement of the Kuznetsk basin there are no any blocks. of the Precambrian continental crust.

Keywords: geochronology, zircon, volcanism, West Siberia, Devonian.

DOI 10.20403/2078-0575-2018-3-13-24

Девонские вулканические образования широко распространены в северо-западной части Алтае-Саянской складчатой области (АССО) и восточной части Обь-Зайсанской складчатой системы. Они принимают участие в строении наиболее древних стратифицированных отложений Колывань-Томской складчатой зоны (КТСЗ) и Горловского прогиба и залегают в основании девон-карбонового осадочного чехла западной части Салаира [5, 17]. Возраст и палеотектоническая обстановка проявления девонского вулканизма до настоящего времени остается предметом дискуссий [7, 8, 11, 13, 15, 17, 19, 20]. В особенности это касается Колывань-Томской складчатой зоны, в пределах которой девонские вулканиты находятся в аллохтонном залегании, образуя отдельные тектонические пластины в нижней части сложно построенного складчатонадвигового сооружения. Цель данной работы состоит в том, чтобы оценить продолжительность девонского вулканического этапа КТСЗ и дать палеотектоническую характеристику основания, на котором формировался ее девонский вулканический пояс. Для решения данной задачи было проведено уран-свинцовое датирование детритового циркона из пачки мелкозернистых вулканомиктовых микститов, залегающей в кровле девонского вулканического разреза Митрофановского поднятия КТСЗ (рис. 1, 2).

Уран-свинцовое датирование обломочного циркона из осадочных последовательностей – широко распространенный метод изучения истории геологического развития осадочных бассейнов и складчатых областей. Он позволяет определять время главных этапов магматической активности в питающих провинциях, делать предположения об относительном положении различных блоков земной коры в геологическом прошлом, устанавливать время эрозионного вскрытия плутонов, ограничивать сверху возраст самих осадочных толщ, устанавливать палеотектонические условия формирования осадочных бассейнов.

В пределах рассматриваемого сектора Центрально-Азиатского складчатого пояса датирование обломочного циркона из осадочных толщ стало проводиться только в последнее десятилетие. В настоящее время данные о возрасте детритовых цирконов для многих складчатых зон и палеобассейнов АССО отсутствуют, что затрудняет историко-геологические реконструкции этого сложного региона и определяет актуальность подобных исследований.

Геологическая позиция, возраст и обстановка формирования девонских вулканитов КТСЗ

Геологическое строение

КТСЗ представляет собой часть Обь-Зайсанской складчатой области герцинского возраста [17]. От южного сегмента данной складчатой области (Иртышско-Зайсанской складчатой зоны) КТСЗ отделена мезозойско-кайнозойскими отложениями Бийско-Барнаульской впадины, перекрывающими область сочленения этих сегментов. Также КТСЗ нередко рассматривается при описании герцинских структур АССО [6, 11], например, как часть единой Алтайской коллизонной системы, включающей Обь-Зайсанскую складчатую область и западную часть Алтае-Саянской [14].

КТСЗ простирается в северо-восточном направлении на расстояние около 450 км при ширине 60–100 км (см. рис. 1). Юго-восточной ее границей является система надвигов, по которой девонские отложения, слагающие фронтальную часть зоны, надвинуты на раннепалеозойские комплексы Кузнецкого Алатау и Салаира, а также на карбон-пермское осадочное выполнение Кузнецкого прогиба и юрские отложения Доронинской впадины. На северо-западе зона перекрывается мезозойскокайнозойским чехлом Западно-Сибирской плиты. Внутренняя структура зоны покровно-надвиговая, представляет собой пакет тектонических пластин, надвинутых в юго-восточном направлении [5]. Наиболее древние отложения КТСЗ, вскрытые в ядрах взброс-антиклинальных поднятий, представлены толщей бимодальных субщелочных вулканических и вулканокластических пород среднедевонского возраста (буготакская, тогучинская и митрофановская свиты). В полях распространения этих отложений встречаются комагматичные вулканитам субвулканические интрузии, сложенные диабазами и плагиориодацитами. Вулканиты перекрыты толщей преимущественно терригенных пород, накапливавшихся с франа по визе. Нижняя часть этой осадочной последовательности – пачинская свита франского возраста [3, 9, 12, 16, 17] сложена аргиллитами, содержащими отдельные массивы рифогенных известняков. Выше залегают юргинская свита фаменского возраста [9, 17], сложенная преимущественно песчаниками и алевролитами, и фамен-каменноугольная инская серия, представляющая собой переслаивание темно-серых глинистых сланцев, алевролитов и песчаников. Перед фронтом КТСЗ расположен Горловский прогиб, выполненный карбон-пермской терригенной угленосной толщей. Прогиб представляет собой грабен-синклиналь, опрокинутую в юго-восточном направлении, и рассматривается как форландовый бассейн, связанный с надвиганием КТСЗ на каледониды Салаира [4, 5].

Возраст и обстановка формирования буготакского вулканического комплекса

Среднедевонские вулканические образования КТСЗ выходят на поверхность в пределах нескольких изолированных поднятий, имеющих сходное геологическое строение, – Ордынского, Буготакского и Митрофановского (см. рис. 1). Во всех поднятиях вулканические образования подстилаются пачкой розовато-серых известняков, содержащих фауну эйфельского возраста [5, 17]. На основании близости состава, строения и возраста отложения буготакской, митрофановской и тогучинской свит, а также комагматичные им субвулканические интрузии выделяются в среднедевонский буготакский (буготакско-тогучинский) комплекс [5, 9, 17] и далее рассматриваются совместно. Субвулканические интрузии представлены дайками, силлами и небольшими по площади (1-3 км) штоками, расположенными среди вулканогенно-осадочных пород. Специфической особенностью буготакского комплекса является контрастный состав: наряду с основными и средне-основными породами в нем достаточно широко развиты и кислые – туфы риолитов, субвулканические интрузии плагиориолитов (альбитофиров) [7, 17]. Среди эффузивных пород преобладают метабазальты и метаандезибазальты, реже метаандезиты. На TAS-диаграмме $(Na_2O+K_2O) - SiO_2$ основная часть точек составов пород буготакского комплексов расположена вдоль линии, разграничивающей поля по-

Рис. 1. Геологическая схема КТСЗ и положение Митрофановского поднятия (по [21] с упрощениями)

1 – каледониды Салаира и Кузнецкого Алатау нерасчлененные; 2 – среднедевонско-раннекарбоновые отложения, деформированный чехол эпикаледонских впадин; 3 – среднедевонские вулканогенные и вулканомиктовые отложения Колывань-Томской складчатой зоны (КТСЗ), буготакская, тогучинская и митрофановская свиты; 4 – верхнедевонские терригенные отложения КТСЗ, пачинская и юргинская свиты; 5 – нижнекарбоновые отложения КТСЗ, инская серия; 6 – карбон-нижнепермские отложения Горловского, Зарубинского и Кузнецкого прогибов; 8 – ранне-среднеюрские отложения наложенных впадин; 9 – гранитоидные интрузии; 10 – мел-кайнозойские отложения чехла Западно-Сибирской плиты; 11 – главные разломы и надвиги; 12 – главные тектонические единицы: I – Кузнецкий Алатау, II – Салаирский кряж, III – Колывань-Томская складчатая зона, IV – Кузнецкий прогиб, V – Зарубинский прогиб, VI – Горловский прогиб, VII – Доронинская впадина VIII – Западно-Сибирская плита; поднятия в пределах КТСЗ: 1 – Ордынское, 2 – Буготакское, 3 – Митрофановское

Рис. 2. Схема геологического строения участка Митрофановского поднятия (по [16] с упрощениями) и место отбора образца для геохронологических исследований

1 – четвертичные отложения р. Томь; 2 – верхний девон юргинская свита, песчаники, глинистые сланцы; 3 – верхний девон, пачинская свита, глинистые сланцы, прослои известняков и песчаников; 4 – верхний девон, пожарищевская свита, глинистые сланцы, песчаники, известняки; 5 – средний девон, митрофановская свита, зеленокаменные плагиоклазовые порфириты, альбитофиры, туфы кислого и основного состава, прослои глинистых песчаников и серицит-хлоритовых сланцев; 6 – дайки диабазов; 7 – взбросы; 8 – место отбора и номер образца вулканокластических микститов для геохронологических исследований

Региональная геология, стратиграфия, тектоника

род нормальной и умеренной щелочности [15]. На диаграммах AFM и FeO*/MgO – SiO₂ точки составов вулканических пород буготакского комплекса располагаются вдоль границы толеитовой и известково-щелочной серий [15].

Представления о возрасте буготакского комплекса основываются на палеонтологических данных, геологических соотношениях с фаунистически охарактеризованными литостратиграфическими подразделениями и отдельных изотопных определениях. Прослои карбонатных и терригенных пород содержат фауну брахиопод, табулят, ругоз [2, 3, 9, 16, 17, 19]. В литературе приводятся описания комплексов фауны из многочисленных местонахождений. Резюмируя опубликованные факты, можно сделать следующие выводы. В настоящее время принятым является среднедевонский (эйфельскоживетский) возраст вулканитов КТСЗ [9, 19]. Комплексы фауны чаще всего характеризуют живетский век, указания на эйфельский возраст фауны из некоторых разрезов встречаются реже [3], поэтому некоторые исследователи ограничивают время вулканизма живетским веком [17]. Высказывается также мнение о раннедевонском (эмсском) возрасте вулканизма в КТСЗ [10]. Новая информация была получена благодаря микропалеонтологическим исследованиям. В работе [18] указано, что из нижней части буготакской свиты были выявлены конодонты вида Icriodus expansus Branson et Mehl, 1938, встречающегося в стратиграфическом интервале от верхней части живетского яруса до базальных уровней среднего франа [26]. Это позволило авторам работы [23] ограничить стратиграфический объем отложений буготакской свиты до верхнего живета – нижнего франа. Большинство геологов отмечают, что вспышка вулканизма была кратковременным событием; по мнению А. Л. Матвеевской, продолжительность вулканизма составляла неполный живетский век [17].

Геологические соотношения буготакского вулканического комплекса в целом следующие: вулканогенный разрез перекрывает эйфельские известняки и перекрывается глинистыми сланцами пачинской свиты франского возраста [3, 9, 17]. Следует отметить, что контакты между вулканогенными породами буготакского комплекса и аргиллитами пачинской свиты почти повсеместно тектонические. В литературе имеются указания лишь на несколько участков, где наблюдается стратиграфический контакт, представляющий собой трансгрессивное налегание терригенных отложений на размытую поверхность вулканитов [3, 5, 18]. Один из них – разрез по р. Каменка вблизи ее впадения в р. Коен – недостаточно обнажен, чтобы можно было сделать выводы о контакте. Другой участок это стратотипический разрез митрофановской свиты на левом берегу р. Томь [16], на котором проведены геохронологические исследования, представленные в данной работе.

Изотопно-геохронологические определения возраста пород буготакского комплекса немногочисленны. По пироксеновым порфиритам, образующим силлы в поле распространения буготакского комплекса, получена рубидий-стронциевая изохрона 334±7,1 млн лет [5]. Этот возраст не согласуется с геологическими данными и, очевидно, связан с нарушением изотопной системы. По порфиритам и плагиориолитам комплекса получены K-Ar датировки 385 млн лет (живет) и 378 млн лет (ранний фран) [5]. Возраст циркона из плагиориолитов буготакского субвулканического комплекса (сопка Большая, N 55°07'18,8", E 83°56'36,2") составляет 383,3±2,9 млн лет [13], что соответствует границе живетского и франского ярусов и хорошо согласуется с новыми палеонтологическим данными [18].

Природа буготакского вулканического комплекса длительное время является предметом дискуссий. В работе [11] буготакская вулканическая зона интерпретируется как фрагмент магматической островной дуги. Эта версия позднее подверглась критике, и на основании ряда геологических и геохимических данных было высказано предположение о том, что буготакские вулканиты формировались в задуговом бассейне, в тылу крупной островодужной системы, в настоящее время скрытой под чехлом Западно-Сибирской плиты [5, 7]. В последние годы при картировочных работах КТСЗ в целом интерпретируется как активная континентальная окраина андийского типа, хотя и отмечается, что контрастный (риолит-базальтовый) состав буготакско-тогучинского комплекса отвечает внутриплитным (рифтогенным?) условиям формирования [9]. В работе [8] среднедевонские вулканиты зоны рассматриваются как продукты континентального рифтогенеза. Последняя точка зрения, на наш взгляд, наиболее геологически обоснована.

Для решения вопроса о природе девонского вулканизма КТСЗ необходимы комплексные исследования не только самих вулканитов, но и всей осадочной последовательности КТСЗ, а также девонских образований сопредельных блоков. Это позволило бы построить непротиворечивую модель тектонической эволюции региона в позднем палеозое.

Характеристика Митрофановского поднятия

Поднятие расположено на северо-востоке КТСЗ (см. рис. 1). В плане оно имеет форму дуги, обращенной выпуклостью к востоку (см. рис. 2). Восточное крыло антиклинали крутое, нарушенное продольными взбросами. Стратотипический разрез митрофановской свиты описан в береговых обнажениях в районе пересечения структуры долиной р. Томь [16]. Мощность наблюдаемого разреза около 900 м. Подошва свиты не обнажена, нижняя часть разреза взброшена на отложения пачинской свиты. Разрез представлен переслаиванием туфов и туфолав альбитофиров, покровами плагиоклазов и порфиритов базальтового и андезитового состава. В подчиненном количестве присутствуют вулканомиктовые песчаники, мелкозернистые вулканокластические микститы и серицит-хлоритовые сланцы. В прослоях осадочных пород, залегающих внутри вулканогенной толщи в 1,5 км южнее описанного разреза, была собрана фауна брахиопод и ругоз живетского возраста [16]. В пологом северно-западном крыле структуры наблюдается стратиграфический контакт с вышележащей пачинской свитой. В кровле разреза митрофановской свиты залегает пачка вулканокластических микститов. Подошва пачинской свиты на основании многочисленных данных достаточно уверенно проводится в нижней части франа [2, 3, 12, 17, 19].

Описание образца

С целью геохронологических исследований нами был отобран образец (№ 15–515, координаты места отбора N 55°39′6,6", Е 85°16′8,8") мелкозернистых вулканокластических микститов, из пачки, залегающей в кровле разреза митрофановской свиты (рис. 3). Вверх по разрезу микститы постепенно переходят в глинистые сланцы пачинской свиты. Микститы представляют собой темно-зеленые грубо рассланцованные алеврито-песчаники с включением плохо окатанных обломков гравийной и мелкогалечной размерности. Обломки представлены различными вулканическими породами подстилающего разреза – базальтами, андезита-

Рис. 3. Микрофотографии вулканокластических микститов митрофановской свиты: а – николи параллельны, б – николи скрещены

ми, дацитами, туфами кислого и основного состава, встречаются единичные обломки известняков, в мелкой фракции много неокатанных кристаллов плагиоклаза. Прослои пород подобного облика встречаются в средней части разреза свиты. По нашему мнению, они представляют собой пролювиальные отложения, формировавшиеся в результате размыва вулканических построек.

Методы исследований U/Pb датирование

Дробление образца и выделение цирконов производилось в ИГМ СО РАН. Зерна циркона были отобраны вручную, помещены в шайбу стандартного размера, залиты эпоксидной смолой и после застывания смолы отполированы. Катодолюминесцентные изображения цирконов были получены на сканирующем электронном микроскопе FEI Quanta600 в университете Аделаиды. U-Pb датирование проводилось там же на установке LA-ICP-MS с использованием масс-спектрометра Agilent 7900, связанного с системой абляции New Wave UP-213. Диаметр пучка лазера составлял 30 мкм, частота – 5 Гц, время облучения одной точки – 30 с. Стандарт GJ-циркона (²⁰⁶Pb/²³⁸U = 608,5±0,4 млн лет [29]) использовался для коррекции фракционирования U-Pb, стандарт Plešovice (²⁰⁶Pb/²³⁸U = 337,13±0,37 м лн лет [27]) – в качестве вторичного стандарта. Девятнадцать анализов этого стандарта в ходе аналитической сессии дали средневзвешенный возраст ²⁰⁶Pb/²³⁸U 340,3±1,6 млн лет (СКВО = 1,8). Расчет U-Pb возрастов проводился с использованием программного пакета Iolite [23].

Nd систематика

Было проведено изучение Sm/Nd изотопной систематики образца песчаников, отобранного с целью датирования детритовых цирконов. Содержания редких и редкоземельных элементов определялись методом ICP-MS в ЦКП многоэлементных и изотопных исследований СО РАН (Новосибирск). Содержания и изотопные составы Sm и Nd определены в ГИ КНЦ РАН (Апатиты) по методикам, описанным в [1]. При расчете єNd(T) и модельных возрастов TNd(DM) использованы современные значения CHUR по [24] (¹⁴³Nd/¹⁴⁴Nd = 0,512638, ¹⁴⁷Sm/¹⁴⁴Nd = 0,1967) и DM по [22] (¹⁴³Nd/¹⁴⁴Nd = 0,513151, ¹⁴⁷Sm/¹⁴⁴Nd = 0,2136). Для учета возможного фракционирования Sm и Nd во внутрикоровых процессах для исследованных пород были рассчитаны двухстадийные Nd модельные возрасты TNd (DM-2st) [25] с использованием среднекорового отношения ¹⁴⁷Sm/¹⁴⁴Nd = 0,12 [28].

Результаты исследований

Из двух образцов было датировано 80 зерен циркона, 73 из которых имеют дискордантность менее 10 %, только они использованы для построения диаграмм относительной вероятности возрастов. Эти диаграммы (возрастные спектры) для проана-

лизированных проб были построены по ²⁰⁶Pb/²³⁸U возрастам для зерен моложе 1 млрд лет и по ²⁰⁷Pb/²⁰⁶Pb возрастам для зерен древнее 1 млрд лет (см. таблицу; рис. 4). На диаграмме относительной вероятности возрастов, построенной по 73 конкордатным значениям, выделяются следующие популяции: 550-472 млн лет - 63 %, 427-404 млн лет -8 %, 394-380 млн лет - 11 %, возраст одного зерна 1985 млн лет. Кроме того, 16,4 % зерен имеют возрасты в диапазоне 366-254 млн лет, что противоречит геологическим и палеонтологическим данным. В катодолюминесцентных лучах цирконы имеют четкую осцилляторную зональность и представлены хорошо ограненными зернами или их неокатанными остроугольными обломками (рис. 5). Отношение Th/U для всех зерен 0,17–1,5, для одного зерна – 3,88, в среднем составляет 0,60. Каких-либо закономерных изменений Th/U отношения в разных популяциях не наблюдается. Результаты датирования приведены в таблице.

Содержание Sm в породе составляет 8,26 ppm, Nd – 37,11 ppm, 147 Sm/ 144 Nd = 0,1345, 143 Nd/ 144 Nd = 0,5128, ϵ Nd (0) = 3,88 ϵ Nd (T) = 6,9 (для возрас-

та 380 млн лет). Неодимовый модельный возраст TNd(DM) – 607 млн лет, рассчитанный по двухстадийной модели TNd(DM-2st) – 571 млн лет.

Обсуждение результатов

Прежде всего следует дать оценку присутствию в пробе цирконов с более молодым возрастом, чем возраст седиментации изученных отложений. Анализ спектра распределения показывает, что аномально молодые цирконы, в отличие от цирконов с возрастами, не противоречащими геологическим данным, не образуют четко выраженных пиков, а формируют шлейф значений от 366 до 255 млн лет. Учитывая, что весь разрез митрофановской свиты находится в пределах низкой поймы р. Томь, мы предполагаем заражение пробы во время паводков. Обнажения грубо рассланцованных вулканокластических микститов представляли собой щетки, которые могли концентрировать мельчайшие минералы тяжелой фракции из речной воды. Часть этих минералов оказалась «замыта» внутрь тонких трещин, что привело к заражению пробы. Карбон-пермские магматические тела до-

Рис. 5. Катодолюминесцентные изображения датированных цирконов, различных возрастных популяций

Геология и минерально-сырьевые ресурсы Сибири – 2018, № 3 – Geology and mineral resources of Siberia

Номер точки	U, ppm	Th <i>,</i> ppm	Pb, ppm	Th/U	Рb ²⁰⁷ /U ²³⁵ возраст	±2σ	Рb ²⁰⁶ /U ²³⁸ возраст	±2σ	Рb ²⁰⁸ /Th ²³² возраст	±2σ	Рb ²⁰⁶ /Рb ²⁰⁷ возраст	±2σ	Конкор- дант- ность,%
515_1.d	87	71	16	0,82	462	19	469	8	472	23	370	110	101
515_2.d	212	71	13	0,33	400	14	364	5	401	20	562	88	91
515 4.d	403	153	32	0,38	420	10	385	5	446	17	583	63	92
515 5.d	108	164	24	1.52	326	20	295	6	306	12	440	150	91
515 6.d	393	290	41	0.74	306	10	299	4	296	9	312	85	98
515 7.d	185	60	14	0.32	500	15	489	7	497	23	505	87	98
515 9.d	658	351	96	0.53	522	9	524	7	563	14	488	45	100
515 10 d	206	61	12	0.29	389	15	386	6	404	21	352	98	99
515_10.d	92	71	18	0.77	573	22	550	11	535	27	620	110	96
515 12 d	155	66	16	0.42	494	17	488	7	511	27	468	95	99
515_12.d	181	72	17	0.40	507	15	495	8	500	23	512	87	98
515_15.d	11	11	2	1 03	311	56	336	18	348	47	-110	330	108
515_16.d	156	52	12	0.33	472	16	485	8	484	24	368	95	103
515_10.d	240	45	10	0.19	499	13	503	8	477	31	431	70	101
515_17.d	89	48	11	0.53	473	21	483	8	500	27	370	110	102
515_10.d	265	166	39	0.63	199	12	505	8	506	16	439	64	101
515_19.d	198	72	17	0,05	509	14	505	8	504	21	490	76	99
515_20.d	110	211	75	0.75	515	10	503	7	51/	11	557	51	98
515_21.d	316	108	01	1 29	186	13	503	7	/87	12	383	70	103
515_24.d	13/	400 80	12	0.59	227	15	306	6	221	17	470	110	Q1
515_25.d	37/	21/	20	0,55	200	۵ 15	297	5	295	10	285	78	99
515_20.u	270	100	10	0,37	299	11	297	5	295	17	205	73	100
515_27.u	270	151	36	0,37	101	15	101	Q	505	17	155	20	100
515_28.u	165	131	16	0,03	494	10	494	Q	116	20	433	110	100
515_29.u	217	02 225	50	0,30	439 511	11	427 500	0	526	10	515	72	97
515_50.u	111	116	22	0,74	102	17	196	0	100	10	405	00	101
515_51.U	144	75	10	0,01	405	10	400 525	0	490 E20	20	405	90 100	101
515_32.U	99 420	150	19	0,70	524	19	222	11	238	29	430	100	102
515_33.U	428	107	30	0,37	418	10	388	0	418	14	550	01	93
515_34.U	442	107	24	0,24	495	10	480	/	487	20	509	22 01	98
515_35.U	120	57	1/	0,38	539	20	491	0	470	32	240	91 120	91
515_30.U	89 120	20	14	0,73	409	20	485	0	4/8	24	340	110	103
515_37.U	120	38 117	7	0,31	405	16	422	0	432	30	670	110	104
515_56.U	194	27	20	0,00	322	24	4//	9	520	20	400	120	91
515_59.u	240	57	9	0,55	492	24	401	10	511	20	490	120	90
515_40.0	249	119	27	0,48	489	14	493	10	200	20	434	150	101
515_41.0	95	/8	11	0,81	285	10	285	/	280	21	230	150	100
515_42.u	102	57	12	0,35	472	12	470	9	407	20	411	120	101
515_43.U	170	59 152	26	0,35	250	11	254 F12	0	245 F10	19	190	120	102
515_44.u	431	100	30 65	0,35	400	0	513	0 7	519	12	453	22	101
515_45.U	054	289	14	0,44	499	10	508 401	10	501	12	442	40	102
515_40.U	143	02	14	0,43	491	17	491	10	504	20	450	8Z 80	100
515_47.U	280	87 101	22	0,31	541 490	20	327	010	102	10	578	89 110	97
515_46.U	147	101	22	0,09	409	12	47Z	0	405	19	300	74	97
515_49.u	227	107	24	0,47	491	13	502	9	490	19	418	74	102
515_50.d	157	87	19	0,55	509	17	495	9	484		528	90	97
515_51.d	296	195	32	0,66	387	13	300	0	380	14	467	200	95
515_52.0	01 220	3U	9	0,37	5/2	40	525	13	ر 50 ا	04	/10	200	92
515_55.0	339	140	31	0,38	494	13	502	ð 7	513	12	429	12	102
515_56.0	100	149	32	0,89	4//	10	488	/	467	10	395	88	102
515_5/.0	/43	242	30	0,33	310		284	4	318		484	5/	91
515_58.0	192	98	24	0,50	505	10	487	/	529	14	538	٥/ ۲	96
515_59.d	560	193	34	0,34	3/9	8	387	5	386	11	311	54	102
515_60.d	101	34	10	0,34	535	19	489	9	626	30	660	100	91
515_61.d	200	98	22	0,49	511	14	496	/	495	18	543	//	97
515_62.d	168	149	30	0,89	432	14	414	/	429	18	482	89	96

Конкордантные (±10%) U-Pb оценки возраста цирконов (млн лет) из пород митрофановской свиты

 $- N_{2} 3(35) + 2018$

∞
-
\simeq
C 1
•
3
\odot
\mathcal{O}

Ľ

Номер точки	U, ppm	Th <i>,</i> ppm	Pb, ppm	Th/U	Рb ²⁰⁷ /U ²³⁵ возраст	±2σ	Рb ²⁰⁶ /U ²³⁸ возраст	±2σ	Рb ²⁰⁸ /Th ²³² возраст	±2σ	Рb ²⁰⁶ /Рb ²⁰⁷ возраст	±2σ	Конкор- дант- ность,%
515_63.d	165	50	10	0,30	417	18	396	8	483	37	480	110	95
517_1.d	25	97	27	3,88	1559	40	420	17	603	25	3890	78	27
517_2.d	1314	668	85	0,51	265	6	265	4	275	6	243	51	100
517_3.d	78	13	12	0,17	1995	20	2000	31	1950	100	1985	34	100
517_4.d	333	121	22	0,36	395	12	384	6	399	16	416	80	97
517_5.d	207	64	15	0,31	472	20	394	7	508	30	782	98	83
517_6.d	322	119	23	0,37	403	12	406	7	401	18	353	71	101
517_7.d	212	81	19	0,38	511	14	498	8	502	22	534	73	97
517_8.d	305	269	43	0,88	379	16	325	5	338	10	652	95	86
517_9.d	109	54	13	0,50	483	21	491	11	500	29	400	110	102
517_10.d	161	93	23	0,58	501	15	499	9	524	19	487	82	100
517_11.d	98	89	22	0,91	507	20	516	10	514	22	430	110	102
517_12.d	195	187	43	0,96	506	16	513	9	495	14	440	86	101
517_13.d	124	59	14	0,48	511	18	485	9	500	26	580	100	95
517_14.d	227	225	45	0,99	430	15	404	8	429	15	525	92	94
517_15.d	108	96	23	0,88	509	26	525	11	508	22	370	130	103
517_16.d	226	120	29	0,53	490	15	509	9	515	21	383	85	104
517_17.d	115	81	18	0,70	487	16	492	9	470	20	425	91	101

статочно широко распространены в водосборном бассейне р. Томь. Заражение при дроблении и сепарации нами исключается, так как эти процедуры выполнялись одним из авторов данной работы собственноручно, а проба включала два образца, отобранные с одной точки, но обрабатывавшиеся независимо. Цирконы аномального возраста встречаются в обоих образцах.

Анализ геологически значимых результатов позволяет сделать ряд выводов и предположений о времени и условиях формирования среднедевонских вулканитов.

Изученные вулканокластические микститы залегают в кровле вулканогенного разреза и сложены продуктами его разрушения, возраст наиболее молодого пика на диаграмме относительной вероятности (394–380 млн лет) близок времени накопления отложений, установленному палеонтологическими и геологическими методами. Интервал 394–380 млн лет, соответствующий среднему девону, очевидно, является временем формирования вулканитов Митрофановского поднятия. Цирконы раннедевонского возраста в пробе отсутствуют.

Более древние цирконы характеризуют возраст основания, на котором формировался вулканический комплекс.

Небольшая группа цирконов имеет силурийский возраст (427–404 млн лет). Источником для них могли послужить гранитоидные массивы Кузнецкого Алатау [20] и северного Салаира [5]. Возраст большей части цирконов – 550–472 млн лет (кембрий – ранний ордовик). Учитывая геологическое положение района можно сделать вывод, что основанием для вулканитов КТСЗ служили вулканические и субвулканические комплексы Салаира, Кузнецкого Алатау и фундамента Кузнецкого прогиба. Салаир сложен вулканическими и субвулканическими породами кембрия — раннего ордовика (печеркинская свита, зелено-фиолетовая серия), которые рассматриваются как комплексы ювенильных энсиматических островных дуг [6, 9, 11].

На диаграмме относительной вероятности отсутствуют цирконы возрастного диапазона 472-427 млн лет (средний ордовик – средний силур). В геологическом строении региона этому разрыву на графике соответствует крупный перерыв в осадконакоплении и магматической активности, фиксирующий паузу между каледонским и герцинским тектоническими циклами. Другой интересной особенностью возрастного спектра цирконов является почти полное отсутствие древних зерен. Это подтверждается тем, что в фундаменте Кузнецкого прогиба блоков древняя континентальная кора отсутствует. Высокое значение єNd(T) (6,9) вулканокластических микститов указывает на то, что источником среднедевонского вулканизма служила деплетированная мантия.

Полученные геохронологические данные позволяют сделать предположения о природе среднедевонского вулканизма. Бимодальный характер, присутствие субщелочных разностей, небольшая продолжительность вулканизма, а главное, положение вулканитов в основании мощной амагматичной карбонатно-терригенной последовательности и заложение вулканической зоны после длительного периода тектонической стабильности – все это указывает на рифтогенный характер вулканизма. Отсутствие крупных гранитодных интрузивов девонского возраста в регионе также плохо согласуется с моделью активной континентальной окраины. По петро- и геохимическим особенностям вулканиты буготакского комплекса в наибольшей мере соответствуют образованиям задугового бассейна [7]. Наши данные дополняют данную интерпретацию, показывая, что рифтогенез, приведший к раскрытию данного морского (задугового?) бассейна, происходил на континентальной коре, сложенной кембрийско-ордовикскими магматическими комплексами.

Средне-позднедевонские вулканиты сопредельных с КТСЗ районов северного Салаира (укропский и сафоновский комплексы) имеют химический состав, характерный для надсубдукционных образований [15]. Это плохо согласуется с представлениями об их рифтогенной природе, которая исходя из геологического положения выглядит наиболее вероятной. По-видимому, химические особенности среднедевонских вулканитов региона отражают не столько палеотектоническую обстановку вулканизма, сколько химизм мантии и коры того блока, на котором они формировались. Каледонская кора Салаира образована ювенильными островодужными системами [6, 9, 11], поэтому сформированные на ней девонские вулканиты наследуют геохимические метки надсубдукционной обстановки (высокое содержание алюминия и низкое содержание титана, тантал-ниобиевая аномалия и др.).

Выводы

В результате уран-свинцового датирования детритового циркона установлено, что вулканогенные породы Митрофановского поднятия формировались в диапазоне 395–380 млн лет, что хорошо согласуется с представлениями о среднедевонском возрасте вулканизма КТСЗ. Геохронологические свидетельства начала вулканической активности уже в раннем девоне отсутствуют.

Среднедевонская вспышка вулканизма произошла после длительного перерыва в магматической активности и осадконакоплении региона. Данный перерыв представляет собой субплатформенную стадию тектонического развития.

Источником среднедевонского вулканизма КТСЗ служила деплетированная мантия.

Вулканический пояс, фрагменты которого представляют собой образования буготакского комплекса, был заложен на Салаирском континентальном блоке, который представлен раннепалеозойской ювенильной корой, сформированной в надсубдукционных условиях. Среднедевонский вулканизм сопровождался расколом континентальной коры и раскрытием морского бассейна, карбонатно-терригенные отложения которого слагают вехнедевонско-раннекарбоновую осадочную последовательность КТСЗ.

В фундаменте Кузнецкого прогиба отсутствуют блоки докембрийской континентальной коры.

Работа выполнена выполнена в рамках государственного задания, проект № 0330-2016-0015, при финансовой поддержке РФФИ (проект № 1635-00010), а также РФФИ и правительства Новосибирской области (проект № 17-45-540758 р-а).

СПИСОК ЛИТЕРАТУРЫ

1. Баянова Т. Б. Возраст реперных геологических комплексов Кольского региона и длительность процессов магматизма. – СПб.: Наука, 2004. – 174 с.

2. Био- и литостратиграфическая характеристика Изылинского горизонта (девон, западная окраина Кузнецкого бассейна) / А. Ю. Язиков, Н. К. Бахарев, Н. Г. Изох и др. // Региональная стратиграфия позднего докембрия и палеозоя Сибири: сб. науч. тр. – Новосибирск: СНИИГиМС, 2013. – С. 146–155.

3. Васютинская Т. Ф., Михайловский Д. В. Геологическая карта СССР масштаба 1:200 000. Серия Кузбасская. Лист № -44-ХІ: объяснительная записка. – М.: ГНТИ литературы по геологии и охране недр, 1963. – 116 с.

4. Возраст питающих провинций Горловского передового прогиба: результаты датирования детритовых цирконов из песчаников балахонской серии / Ф.И.Жимулев, Дж. Гиллеспи, С. Глорие и др. // Геосферные исследования. – 2017. – № 2. – С. 33–48.

5. Геодинамика, магматизм и металлогения Колывань-Томской складчатой зоны / В. И. Сотников, Г. С. Федосеев, Л. В. Кунгурцев и др.; науч. ред. О. П. Иванов. – Новосибирск: Изд-во СО РАН, НИЦ ОИГГМ, 1999. – 227 с.

6. **Геодинамическая** карта западной части Палеоазиатского океана / Н. А. Берзин, Р. Г. Колман, Н. Л. Добрецов и др. // Геология и геофизика. – 1994. – Т. 35, № 7–8. – С. 8–28.

7. Геодинамические комплексы и этапы развития Колывань-Томской складчатой зоны (Западная Сибирь) / Л. В. Кунгурцев, Г. С. Федосеев, В. А. Широких и др. // Геология и геофизика. – 1998. – Т. 39, № 1. – С. 26–37.

8. **Государственная** геологическая карта Российской Федерации. Масштаб 1:200 000 (изд. 2-е). Серия Кузбасская. Лист О-45–ХХХІІ (Тайга) / Н. Ю. Ахмадщин, О. А. Дубинскайте, О. П. Капишникова и др. – СПб.: Картфабрика ВСЕГЕИ, 2018. – 207 с.

9. Государственная геологическая карта Российской Федерации. Масштаб 1:1 000 000 (третье поколение). Серия Алтае-Саянская. Лист N-44 (Новосибирск) / Г. А. Бабин, А. И. Черных, А. Г. Головина и др. – СПб.: Картфабрика ВСЕГЕИ, 2015. – 392 с. + 4 вкл.

10. **Гутак Я. М., Антонова В. А.** Корреляция средне-верхнедевонских отложений севера Кузбасса и Томь-Колыванской области // Геосферные исследования. – 2017. – № 2. – С. 68–76.

11. Зоненшайн Л. П., Кузьмин М. И., Натапов Л. М. Тектоника литосферных плит территории СССР. В 2 т. – М.: Недра, 1990 – Т. 1. – 325 с.; Т. 2. – 334 с.

12. Изох Н. Г., Язиков А. Ю. Новые данные о возрасте известняков Шипуновского мраморно-

го карьера (окрестности г. Искитим Новосибирской области) // Интерэкспо ГЕО-Сибирь-2015. XI Междунар. науч. конгр. (Новосибирск, 13–25 апреля 2015 г.): Междунар. науч. конф. «Недропользование. Горное дело. Направления и технологии поиска, разведки и разработки месторождений полезных ископаемых. Геоэкология»: сб. матер. в 3 т. Т.1. – Новосибирск: СГУГиТ, 2015. – С. 63–67.

13. История формирования Колывань-Томской складчатой зоны по результатам U/Pb LA-ICP-MS датирования детритового циркона / Ф. И. Жимулев, Дж. Гиллеспи, С. Глорие и др. // Геология и минерагения северной Евразии. – Новосибирск, 2017. – С. 75–77.

14. Корреляция герцинских деформаций, осадконакопления и магматизма алтайской коллизионной системы как отражение плейт- и плюмтектоники / А. Г. Владимиров, Н. Н. Крук, О. П. Полянский и др. // Проблемы тектоники Центральной Азии. – М.: Геос, 2005. – С. 277–308.

15. Котляров А. В., Ветров Е. В. Петрохимическая характеристика средне-верхнедевонского вулканизма Колывань-Томской складчатой зоны и Салаира // Петрология магматических и метаморфических комплексов: сб. тр. конф. – Томск: ТГУ, 2017. – С. 229–231.

16. Лоскутов В. Ф. Геологическая карта СССР масштаба 1:200 000. Серия Кузбасская. Лист N-45-II: объяснительная записка. – М.: Недра, 1965. – 81 с.

17. Матвеевская А. Л. Герцинские прогибы Обь-Зайсанской геосинклинальной системы и ее обрамления. – М.: Наука, 1969. – 286 с.

18. **О возрасте** буготакской свиты Колывань-Томской складчатой зоны по палеонтологическим данным / А. Ю. Язиков, Н. Г. Изох, В. А. Широких, В. А. Кутолин // Интерэкспо ГЕО-Сибирь-2015. XI Междунар. науч. конгр. (г. Новосибирск, 13– 25 апреля 2015 г.): Междунар. науч. конф. «Недропользование. Горное дело. Направления и технологии поиска, разведки и разработки месторождений полезных ископаемых. Геоэкология»: сб. матер. в 3 т. Т. 1. – Новосибирск: СГУГиТ, 2015. – С. 212–216.

19. Решения Всесоюзного совещания по разработке унифицированных стратиграфических схем докембрия, палеозоя и четвертичной системы Средней Сибири. Новосибирск, 1979 г. Ч. II. Средний и верхний палеозой. – Новосибирск: СНИИГГиМС, 1982. – 129 с.

20. Руднев С. Н. Раннепалеозойский гранитоидный магматизм Алтае-Саянской складчатой области и Озерной зоны Западной Монголии. – Новосибирск: Изд-во СО РАН, 2013. – 300 с.

21. **Geological** map of Central Asia and Adjacent Areas, scale 1:2 500 000/ ed. Li T et al. – Beijing: Geological Publishing House, 2008.

22. **Goldstein S. J., Jacobsen S. B.** Nd and Sr isotopic systematics of rivers water suspended material: implications for crustal evolution // Earth and Planetary Science Letters. – 1988. – Vol. 87. – P. 249–265.

23. **Iolite**: freeware for the visualisation and processing of mass spectrometric data / C. Paton, J. Hellstrom, B. Paul, et al. // Journal of Analytical Atomic Spectrometry. – 2011. – Vol. 26. – P. 2508–2518.

24. Jacobsen S. B., Wasserburg G. J. Sm-Nd evolution of chondrites and achondrites // Earth and Planetary Science Letters. – 1984. – Vol. 67. – P. 137–150.

25. **Keto, L. S., Jacobsen S. B.** Nd and Sr isotopic variations of Early Paleozoic oceans // Earth and Planetary Science Letters. – 1987. – Vol. 84. – P. 27–41.

26. Narkiewicz K., Bultynck P. The Upper Givetian (Middle Devonian) subterminus conodont Zone in North America, Europe and North Africa // Paleontology. – 2010. – Vol. 84(4). – P. 588–625.

27. **Plešovice** zircon – a new natural reference material for U-Pb and Hf isotopic microanalysis / J. Sláma, J. Košler, D. J. Condon et al. // Chemical Geology. – 2008. – Vol. 249. – P. 1–35.

28. **Taylor S. R., McLennan S. M.** The Continental Crust: its Evolution and Composition. – London: Black-well, 1985. – 312 p.

29. **The application** of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology / S. E. Jackson, N. J. Pearson, W. L. Griffin, E. A. Belousova // Chemical Geology. – 2004. – Vol. 211. – P. 47–69.

REFERENCES

1. Bayanova T.B. Vozrast repernykh geologicheskikh kompleksov Kol'skogo regiona i dlitel'nost' protsessov magmatizma [The age of reference geological complexes of the Kola Region and duration of magmatic processes]. Saint Petersburg, Nauka Publ., 2004. 174 p. (In Russ.).

2. Yazikov A. Yu. et al. [Bio- and lithostratigraphic characteristics of the Izylinsky horizon (Devonian, western margin of the Kuznetsk basin)]. *Regional'naya stratigrafiya pozdnego dokembriya i paleozoya Sibiri: sb. nauch. trudov* [Regional stratigraphy of the Late Precambrian and Paleozoic of Siberia: coll. sci. works]. Novosibirsk, SNIIGGiMS Publ., 2013, pp. 146–155. (In Russ.).

3. Vasyutinskaya T.F., Mikhaylovskiy D.V. *Geologicheskaya karta SSSR masshtaba 1:200000. Seriya Kuzbasskaya. List N-44-XII: ob"yasnitel'naya zapiska* [Geological map of the USSR at the scale of 1: 200000. Series Kuzbass. Sheet N-44-XII: explanatory note]. M., SRTP of literature on geology and conservation of mineral resources, 1963. 116 p. (In Russ.).

4. Zhimulev F.I., et al. [The age of the feeding provinces of the Gorlovsky forward trough: dating results of detrital zircons from sandstones of the Balakhonskaya series]. *Geosfernye issledovaniya – Geospheric researches*, 2017, no. 2, pp. 33–48. (In Russ.).

5. Sotnikov V.I., et al. *Geodinamika, magmatizm i metallogeniya Kolyvan'-Tomskoy skladchatoy zony* [Geodynamics, magmatism and metallogeny of the Kolyvan-Tomsk folded zone]. Novosibirsk, SB RAS, NITs OIGGM Publ., 1999. 227 p. (In Russ.). 6. Berzin N.A., Kolman R.G., Dobretsov N.L., et al. [Geodynamic map of the western part of the Paleo-Asiatic Ocean]. *Geologiya i geofizika*, 1994, vol. 35, no. 7–8, pp. 8–28. (In Russ.).

7. Kungurtsev L.V., Fedoseev G.S., Shirokikh V.A., et al. *Geodinamicheskie kompleksy i etapy razvitiya Kolyvan'-Tomskoy skladchatoy zony (Zapadnaya Sibir')* [Geodynamic complexes and stages of development of the Kolyvan-Tomsk folded zone (West Siberia)]. *Geologiya i geofizika*, 1998, vol. 39, no. 1, pp. 26–37. (In Russ.).

8. Akhmadshin N. Yu., et al. Gosudarstvennaya geologicheskaya karta Rossiyskoy Federatsii. Masshtab 1:200000 (izdanie vtoroe). Seriya Kuzbasskaya. List O-45–XXXII (Tayga): ob"yasnitel'naya zapiska [State Geological Map of the Russian Federation. Scale 1: 200000 (second edition). Series Kuzbass. Sheet O-45-XXXII (Taiga): explanatory note]. Saint Petersburg, VSEGEI Cartographic factory, 2018. 207 p. (In Russ.).

9. Babin G.A., et al. *Gosudarstvennaya geologicheskaya karta Rossiyskoy Federatsii. Masshtab* 1:1000 000 (tret'e pokolenie). Seriya Altae-Sayanskaya. List N-44–Novosibirsk: ob"yasnitel'naya zapiska [State Geological Map of the Russian Federation. Scale 1: 1 000 000 (third generation). The Altai-Sayan series. Sheet N-44-Novosibirsk: explanatory note]. Saint Petersburg, VSEGEI Cartographic factory, 2015. 392 p.+4 incl. (In Russ.).

10. Gutak Ya.M., Antonova V.A. [Correlation of Middle-Upper Devonian deposits of the north of Kuzbass and Tom-Kolyvan Region]. *Geosfernye issledo-vaniya – Geospheric researches*, 2017, no. 2, pp. 68–76. (In Russ.).

11.Zonenshayn L.P., Kuzmin M.I., Natapov L.M. *Tektonika litosfernykh plit territorii SSSR* [Tectonics of lithospheric plates of the USSR territory]. Moscow, Nedra Publ., 1990, vol. 1, 325 p.; vol. 2, 334 p. (In Russ.).

12. Izokh N.G., Yazikov A.Yu. [New data on the age of limestones of the Shipunovsky marble quarry (in the neighborhood of Iskitim, Novosibirsk Region)] Interekspo GEO-Sibir'-2015. XI Mezhdunar. nauch. kongr. (g. Novosibirsk, 13–25 aprelya 2015 g.): Mezhdunar. nauch. konf. "Nedropol'zovanie. Gornoe delo. Napravleniya i tekhnologii poiska, razvedki i razrabotki mestorozhdeniy poleznykh iskopaemykh. Geoekologi-ya": sb. materialov v 3-kh tomakh [Interexpo GEO-Siberia-2015. XI Intern. sci. congress. (Novosibirsk, April 13–25, 2015): Intern. sci. conf. "Subsoil Use: Mining: Directions and Technologies for Prospecting, Exploration and Development of Mineral Deposits. Geoecology": coll. materials in 3 volumes]. Novosibirsk, SGUGiT Publ., 2015, vol. 1, pp. 63–67. (In Russ.).

13.Zhimulev F.I., Gillespi J., Glorie S., et al. [The history of the formation of the Kolyvan-Tomsk folded zone according to the results of U/Pb LA-ICP-MS dating of detrital zircon] *Geologiya i minerageniya severnoy Evrazii: sb. nauch. rabot* [Geology and mineralogy of northern Eurasia: coll. sci. works]. Novosibirsk, 2017, pp. 75–77. (In Russ.).

14. Vladimirov A.G., Kruk N.N., Polyanskiy O.P., et al. [Correlation of Hercynian deformations, sedimentation and magmatism of the Altai collision system as a reflection of plate and plume tectonics]. *Problemy tektoniki Tsentral'noy Azii: sb. nauch. rabot* [Problems of Central Asian tectonics: a collection of scientific papers]. Moscow, Geos Publ., 2005, pp. 277–308. (In Russ.).

15.Kotlyarov A.V., Vetrov E.V. [Petrochemical characteristics of the Middle-Upper Devonian volcanism of the Kolyvan-Tomsk folded zone and Salair]. *Trudy konferentsii "Petrologiya magmaticheskikh i metamorficheskikh kompleksov"* [Proc. Conf. "Petrology of igneous and metamorphic complexes"]. Tomsk, TSU Publ., 2017, p. 229–231. (In Russ.).

16.Loskutov V.F. Geologicheskaya karta SSSR masshtaba 1:200000. Seriya Kuzbasskaya. List N-45-II: ob"yasnitel'naya zapiska [Geological map of the USSR. Scale 1: 200000. Series Kuzbass. Sheet N-45-II: explanatory note]. Moscow, Nedra Publ., 1965. 81 p. (In Russ.).

17. Matveevskaya A.L. *Gertsinskie progiby Ob'-Zaysanskoy geosinklinal'noy sistemy i ee obramleniya* [Hercynian troughs of the Ob-Zaisan geosynclinal system and its framing]. Moscow, Nauka Publ., 1969. 286 p. (In Russ.).

18.Yazikov A. Yu., Izokh N.G., Shirokikh V.A., Kutolin V.A. [On the age of the Bugotakskaya Formation of the Kolyvan-Tomsk folded zone according to paleontological data] *Interekspo GEO-Sibir'-2015. XI Mezhdunar. nauch. kongr. (g. Novosibirsk, 13–25 aprelya 2015 g.): Mezhdunar. nauch. konf. "Nedropol'zovanie. Gornoe delo. Napravleniya i tekhnologii poiska, razvedki i razrabotki mestorozhdeniy poleznykh iskopaemykh. Geoekologiya": sb. materialov v 3-kh tomakh* [Interexpo GEO-Siberia-2015. XI Intern. sci. congress. (Novosibirsk, April 13–25, 2015): Intern. sci. conf. "Subsoil Use: Mining: Directions and Technologies for Prospecting, Exploration and Development of Mineral Deposits. *Geoecology": coll. materials in 3 volumes*]. Novosibirsk, SGUGiT Publ., 2015, vol. 1, pp. 212–216. (In Russ.).

19.Resheniya Vsesoyuznogo soveshchaniya po razrabotke unifitsirovannykh stratigraficheskikh skhem dokembriya, paleozoya i chetvertichnoy sistemy Sredney Sibiri. Novosibirsk, 1979 g. [Decisions of the All-Union Meeting on the Development of Unified Stratigraphic Charts of Precambrian, Paleozoic and Quaternary of Central Siberia. Novosibirsk, 1979]. Novosibirsk, SNIIGGiMS Publ., 1982. Part II: Middle and Upper Paleozoic. 129 p. (In Russ.).

20.Rudnev S.N. *Rannepaleozoyskiy granitoidnyy* magmatizm Altae-Sayanskoy skladchatoy oblasti i Ozernoy zony Zapadnoy Mongoli [Early Paleozoic granitoid magmatism of the Altai-Sayan folded area and the Lake Zone of Western Mongolia]. Novosibirsk, SB RAS Publ., 2013. 300 p. (In Russ.).

21.Geological map of Central Asia and Adjacent Areas, scale 1:2 500 000 / ed. Li Tingdong, et al. Beijing, Geological Publishing House, 2008.

22.Goldstein S.J., Jacobsen S.B. Nd and Sr isotopic systematic of rivers water suspended material: implica-

№ 3(35) ♦ 2018

tions for crustal evolution. Earth and Planetary Science Letters, 1988, vol. 87, pp. 249-265.

23. Paton C., Hellstrom J., Paul B., et al. Iolite: freeware for the visualisation and processing of mass spectrometric data. Journal of Analytical Atomic Spectrometry, 2011, vol. 26, pp. 2508-2518.

24. Jacobsen S.B., Wasserburg G.J. Sm-Nd evolution of chondrites and achondrites. *Earth and Planetary Science Letters*, 1984, vol. 67, pp. 137–150.

25. Keto L.S., Jacobsen S.B. Nd and Sr isotopic variations of Early Paleozoic oceans. Earth and Planetary *Science Letters*, 1987, vol. 84, pp. 27–41.

26. Narkiewicz K., Bultynck P. The Upper Givetian (Middle Devonian) subterminus conodont Zone in North America, Europe and North Africa. Paleontology, 2010, vol. 84(4), pp. 588-625.

27. Sláma J., Kosler J., Condon D.J., et al. Plesovice zircon - a new natural reference material for U-Pb and Hf isotopic microanalysis. Chemical Geology, 2008, vol. 249, pp. 1–35.

28. Taylor S.R., McLennan S.M. The Continental Crust: Its Evolution and Composition. London, Blackwell, 1985. 312 p.

29. Jackson S.E., Pearson N.J., Griffin W.L., Belousova E.A. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chemical Geology, 2004, vol. 211, pp. 47–69.

> © Ф.И. Жимулев, Дж. Гиллеспи, С. Глорие, А. В. Котляров, Е. В. Ветров, Й. Де Граве, 2018